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ABSTRACT

Connecting optimal transport and variational inference, we present a principled
and systematic framework for sampling and generative modelling centred around
divergences on path space. Our work culminates in the development of Controlled
Monte Carlo Diffusions for sampling and inference, a score-based annealing tech-
nique that crucially adapts both forward and backward dynamics in a diffusion
model. On the way, we clarify the relationship between the EM-algorithm and
iterative proportional fitting (IPF) for Schrodinger bridges, providing a conceptual
link between fields. Finally, we show that CMCD has a strong foundation in the
Jarzinsky and Crooks identities from statistical physics, and that it convincingly
outperforms competing approaches across a wide array of experiments.

1 INTRODUCTION

Optimal transport (Villani et al.,[2009) and variational inference (Blei et al., 2017) have for a long
time been separate fields of research. In recent years, many fruitful connections have been established
(Liu et al.,2019), in particular based on dynamical formulations (Tzen & Raginsky)} 2019a)), and in
conjunction with time reversals (Huang et al., 2021a; Song et al.| |2021). The goal of this paper is
twofold: In the first part, we enhance those relationships based on forward and reverse time diffusions,
and associated Girsanov transformations, arriving at a unifying framework for generative modeling
and sampling. In the second part, we build on this and develop a novel score-based scheme for
sampling from unnormalised densities. To set the stage, we recall a classical approach (Kingma &
Welling| |2014; Rezende & Mohamed, [2015)) towards generating samples from a target distribution
w(x), which is the goal both in generative modelling and sampling:

Generative processes, encoders and decoders. We consider methodologies which can be imple-
mented via the following generative process,
0
z~v(z),  zlz~p(z|z), €]

transforming a sample z ~ v(z) into a sample  ~ [ p?(z|z)v(dz). Traditionally, v(z) is a simple
auxiliary distribution, and the family of transitions p’ (z|z) is parameterised flexibly and in such a
way that sampling according to (1)) is tractable. Then we can frame the tasks of generative modelling
and sampling as finding transition densities such that the marginal in & matches the target distribution,

p(e) = [ @llde) @
To learn such a transition, it is helpful to introduce a reversed process
z~p(x),  zle~qf(zlz), 3

relying on an appropriately parameterised backward transition ¢?(z|x). We will say that (1) and .
are reversals of each other in the case when their joint distributions coincide, that is, when

¢°(zlz)u(@) = p’ (2|2)v(z). O]
To appreciate the significance of (3), notice that if (@) holds, then (2)) is implied by integrating both
sides with respect to z. Building on this observation, it is natural to define the loss function

Lp(¢,0) == D (¢°(z|@) ()| |p’ (x|2)v(2)) , )

*Equal contribution.
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where D is a divergenceﬂ between distributions yet to be specified. Along the lines of Bengio et al.
(2021)); \Sohl-Dickstein et al.|(2015);Wu et al.|(2020); L1u et al.| (b), we have now laid the foundations
for algorithmic approaches that aim at sampling from g () by minimising £p (¢, 6):

Framework 1. Let D be an arbitrary divergence, and assume that £p (¢, 0) = 0. Then we have
u(w)=/p9(w\Z)V(dZ) and V(z)=/q¢(z|w)u(dw), (6)

that is, v/(2) is transformed into i (z) by p?(z|2), and p(z) is transformed into v(2) by ¢ (z|x).

The sampling problem. Let v denote a probability density function on RY of the form

v(z) = ”(Zz), Z = [ D(2)dz, where © : RY — R can be differentiated and evaluated pointwise
but the normalizing constant Z is intractable. We are interested in both estimating Z and obtaining
approximate samples from v given we can sample from a more tractable density p. Framework
provides us with an objective to tackle the sampling problem as once Lp(¢,6) = 0, we can
generate samples from v/(2) via the variational distribution ¢®(z|x). Through variational inference

and optimal transport, we discuss relationships to classical methods as well as shortcomings:

KL-divergence, ELBO and variational inference. Choosing D = Dy, in (E]), variational inference
(VI) and latent variable model based approaches (Dempster et al.l [1977; Blei et al.l 2017; Kingma &
Welling| 2014) can elegantly be placed within Framework]I} Indeed, direct computation (see Appendix
shows that Lp,, (¢,0) = —Ege(a)[ELBOL(9,0)] + Egpz)[In u(z)], so that minimising
Ly, (6, 0) is equivalent to maximising the expected evidence lower bound (ELBO), also known as
the negative free energy (Blei et al.,|[2017). This derivation is alternative to the standard approach via
maximum likelihood and convex duality (or Jensen’s inequality) (Kingma et al.||2021| Section 2.2),
and directly accomodates various modifications by replacing the Dk -divergence (see Appendix [B).

Couplings, (optimal) transport and nonuniqueness. Assuming (4) holds, it is natural to define the
joint distribution 7(x, ) := ¢?(z|z)u(x) = p?(x|z)v(z), which is a coupling between p(x) and
v(z). Viewed from this angle, the set of minimisers of £(¢, 6) stands in one-to-one correspondence
with the set of couplings between p(x) and v(z), provided that the parameterisations are chosen
flexibly enough. Under the latter assumption, the objective in (5)) admits an infinite number of
minimisers, rendering algorithmic approaches solely based on Framework [I] potentially unstable
and their output hard to interpret. In the language of optimal transport (Villani, [2003), minimising
L(¢,0) enforces the marginal (‘transport’) constraints in @ without a selection principle based on
an appropriate cost function (‘optimal’).

Methods such as VAEs (Kingma & Welling, [2014) parameterise p?(x|z) and ¢®(z|x) with a re-
stricted family of distributions (such as Gaussians), thus restricting the set of couplings. Expectation
maximisation (EM) minimises £(¢, #) in a component-wise fashion, resolving nonquniqueness in a
procedural manner (see Section [3.1). Common diffusion models fix either p? (x|z) or ¢*(z|x), and
thus select a coupling (Section [2.2)). In this paper, we argue that the full potential of diffusion models
can be unleashed by training the forward and backward processes at the same time, but appropriate
modifications that resolve the nonuniqueness inherent in Framework [I] need to be imposed. To
develop principled approaches towards this, we proceed as follows:

Outline and contributions. In Section [2| we recall hierarchical VAEs (Rezende et al.| [2014) and,
following [Tzen & Raginsky|(2019a), proceed to the infinite-depth limit described by the SDEs in
(T2). Readers more familiar with VI and discrete time might want to take the development in Section
2.1]as an explanation of (I2)); readers with background in stochastic analysis might take Framework
s their starting point. In Propositionwe provide a generalised form of the Girsanov theorem
for forward-reverse time SDEs, crucially incorporating the choice of a reference process that allows
us to reason about sampling and generation in a systematic and principled way. We demonstrate
that a range of widely used approaches, such as score-based diffusions and path integral samplers,
among others, are special cases of our unifying framework (Section[2.2). Similarly in Section[3.T]we
unify optimal transport (OT) and VI under our framework by establishing a correspondence between
expectation-maximisation (EM) and iterative proportional fitting (IPF). Going further, we show that
this framework allows us to derive new methods:

In Section[3.2] we derive a novel score-based annealed flow technique, the Controlled Monte Carlo
Diffusion (CMCD) sampler, and show that it may be viewed as an infinitesimal analogue of the

'As usual, divergences are characterised by the requirement that D(a| ’ B) > 0, with equality iff « = .
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method from Section [3.1] Finally, we connect CMCD to the foundational identities by Crooks and
Jarzynki in statistical physics, and show that it empirically outperforms a range of state-of-the-art
inference methods in sampling and estimating normalizing constants (Section ).

2 FROM HIERARCHICAL VAES TO FORWARD-REVERSE TIME DIFFUSIONS

2.1 HIERARCHICAL VAES (REZENDE ET AL.,[2014)

A particularly flexible choice of implicitly parameterising p’ (|z) and ¢?(z|z) can be achieved via a
hierarchical model with intermediate latents: We identify @ =: yy and z =: y, with the ‘endpoints’

of the layered augmentation (yo, Y1, ..., YL—1,Yr) =: Yo.L, and define
L

L
¢*(yr,- - wlyo) = [[¢" wlvi-r), o yealye) = [[" wialw), D)
=1 =1

so that ¢?(z|z) and p?(zx|z) can be obtained from (7) by marginalising over the auxiliary variables
Y1,...,Yr—1. Here, ¢ = (¢o,...,¢r—1)and 6 = (61, ..., 0}) refer to sets of parameters to be spec-
ified in more detail below. Further introducing notation, we write g% (yo.2.) := q®(y1.2|y0) (o)
as well as p”% (yo.1.) = p’(yo..—1|yr)v(yr) and think of those implied joint distributions as em-
anating from p(x) = p(yo) and v(z) = v(yyr), respectively, moving ‘forwards’ or ‘backwards’
according to the specific choices for ¢ and 6. In the regime when L is large, the models in (7)) are
very expressive, even if the intermediate transition kernels are parameterised in a simple manner. We
hence proceed by assuming Gaussian distributions,

" yilyi) =N (wilyi—1+0a) [ (yi1),80%0), p"(yi_1|y) =N (yi_1|y+-66) (wi), 5°I), (8)

where o > 0 controls the standard deviation, and J > 0 is a small parameter, anticipating the limits
L — 00,3 — 0 to be taken in Sectionbelow. The vector fields af(yl) and bf (y;) introduced in
should be thought of as parameterised by ¢ and 6, but we will henceforth suppress this for brevity.
The models (7)-(8) could equivalently be defined via the Markov chains
i1 =y + day () + Voo&, Yo ~ 1 = Yo ~ ¢ (Yo.L), (9a)
Y1 =y + db(yr) + Viog, yr ~v = yo.L ~p"(yo.r), (9b)

where (fl)lL_i is an iid sequence of standard Gaussian random variables. As indicated, the forward

process in l%l may serve to define the distribution q”’¢(yo; 1), whilst the backward process in
induces p”*’(yo.1,). Note that the transition densities p’(x|2) and ¢?(z|z) obtained as the marginals
of (7) will in general not be available in closed form. However, generalising slightly from Framework
we may set out to minimise the extended loss

L54(6,0) = D(¢"? (yo..)|IP"" (yo.)), (10)

where D refers to a divergence on the ‘discrete path space’ {yo.,}. Clearly, L5*(¢,60) = 0 still
implies (6)), but is no longer equivalent. More specifically, in the case when D = Dy, the data
processing inequality yields

Dxr(a" (yo:) 10" (yo:)) = D, (¢ (z[@) (@) ||p” (2] 2)v(2)) | (11)

so that LG (¢, 0) provides an upper bound for Lp,, (¢,0) as defined in .

2.2  DIFFUSION MODELS — HIERARCHICAL VAES IN THE INFINITE DEPTH LIMIT

Here we take inspiration from Section@]and Tzen & Raginsky|(2019a);|Li et al.[(2020);|Huang et al.
(2021a) to investigate the L — oo limit, using stochastic differential equations (SDEs). To this end,
we think of [ = 0, ..., L as discrete instances in a fixed time interval [0, T'], equidistant with time
step 4, that is, we set § = T'L~!. The discrete paths yo.7, give rise to continuous paths (Yi)o<i<r €
C([0, T]; R?) by setting Y3, = y; and linearly interpolating Y; and Y4 1y. To complete the set-up,
we think of a® = (ag), .. 7“%—1) and b? = (b9, ...,09 ) in (8) as arising from time-dependent vector
fields a,b € C>([0,T] x R%:RY) via af (y;) = ags—1 (Ys) and b (1) = bys—1 (V).

Taking the limit 6 — 0, while keeping 7' > 0 fixed, transforms the Markov chains in (9) into
continuous-time dynamics described by the SDEs (Tzen & Raginsky, [2019a)
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— —
dY; = at(Yt) dt+od Wy, Yy~ uw = (Y;f)OgtST ~ Q,u,a = ]P;,u,a, (12a)
F
AY; = 0,(Y))dt + 0 AWy, Yo ~v = (Yi)ocuer ~P¥0 = PYO, (12b)

where H} and g denote forward and backward It0 integration (see Appendix |A| for more details
and remarks on the notation), and (W;)o<¢< is a standard Brownian motion. In complete analogy
with (@), the SDEs in (12) induce the distributions Q% and P** on the path space C([0, T]; R%).
Relating back to the discussion in the introduction, note that we maintain the relations Yy = «
and Yy = z, and the transitions are parameterised by the vector fields a,b, in the sense that
P (@lz) = Py (@[Yr = 2) = P (@) and ¢ (2]@) = Q5 (21Y5 = @) = Q3" (2).

The following well-known result (Anderson, [1982; Nelsonl [1967) allows us to relate forward and
backward path measures via a local (score-matching) condition for the reversal relation in (4). E]
Proposition 2.1 (Nelson’s relation). For p and a of sufficient regularity, denote the time-marginals
of the correspondmg path measure by P! =: pl"® Then P** = P¥? if and only if

v= IP”E,?“ and by :at—UQVInpt’“, Sorallt € (0,T]. (13)
Remark 1. A similarly clean characterisation of equality between forward and backward path
measures is not available for the discrete-time setting as presented in (9). In particular, Gaussianity of
the intermediate transitions is not preserved under time-reversal.
A recurring theme in this work and related hterature is the interplay between the score-matching

condition in ( b and the global condition D( B a|$ b) = 0, invoking Frameworkl To enable
calculations involving the latter, we will rely on the following result:

— _
Proposition 2.2 (forward-backward Radon-Nikodym derivatives). Let P o7’ = Preo” bea
reference path measure (that is, Uo, T and v define diffusions as in and are related as in

Proposition , absolutely continuous with respect to both P *® and PV, Then, ﬁ“’“-almost
surely, the corresponding Radon-Nikodym derivative (RND) can be expressed as follows,

_>
dp e du dv
1 Y)=In|— ) (YY) -1 Y. 14
(222 = () o
T -
+ 5 [ (=) () (Y= % (a+9f) () dt)  (14b)
0
T -
—5/ (bt—v;)(Yt)(dYt—é(bt+7;)(Yt)dt). (14c)
0
Proof. The proof relies on Girsanov’s theorem (Ustiinel & Zakail [2013), using the reference to relate
the forward and backward processes. For details, see Appendix [E] O

Remark 2 (Role of the reference process). According to Proposition e Radon-Nikodym

derivative between ]P’ #:@ and (@ can be decomposed into boundary terms l!i as well as forward
and backward path integrals (T4b) and . Since the left-hand side of (I4a) does not depend on the
reference I'g 7, v * the expressmns in l.i are in principle equivalent for all ch01ces of reference.
The freedom in I'g 7 and ~* allows us to ‘reweight’ between b and 14c), or even cancel
terms. A canonical choice is the Lebesgue measure for I'g and I'r, and 7t = 0 see Appendix

Remark 3 (Discretisation and conversion formulae). The distinction between forward and back—
ward integration in is related to the time points at which the integrands (at — ) (Y;) and

(bt — Y ) (Y:) would be evaluated in discrete-time approximations, e.g.,
T T
<_
/ at Y;f dYt Za‘t Y;f L+1 _Yi)’ / at(ift)'dn%zati+1(xi+1)'(mi+1 _Y;fl)
0 0 i

Alternatively, forward and backward integrals can be transformed into each other using the conversion

T T T
[t ¥ = [t T¥i- o[ (v et (1)
0 0 0

We refer to Kunita (2019) and Appendix [A] for further details. In passing, we note that (I5) allows us
to eliminate the Hutchinson estimator (Hutchinsonl [1989)from a variety of common score-matching
objectives, potentially reducing the variance of gradient estimators, see Appendix [C.1]

’The global condition ﬁ“”“ = ﬁ”’b is captured by the local condition due to l) ’s Markovian nature.
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Framework [I] can be translated into the setting of (I2), noting that (II)) continues to hold with
appropriate modifications:

%
Framework 1’. For a divergence D on path space, minimise D(ﬁ”’“rﬁ”’b). If D(P ”’“|$”’b) =0,
then (12a) transports 11 to v, and (12b) transports v to . [}

At optimality, D(ﬁ/"“ (ﬁ”’b) =0, Proposition allows us to obtain the scores associated to the
learned diffusion via 02V In p}* = a; — b;. In this way, Framework[1]is closely connected to (and
in some ways extends) score-matching ideas (Song & Ermon, 2019} [Song et al., 2021). Indeed,
recent approaches towards generative modeling and sampling can be recovered from Framework

by making specific choices for the divergence D, the parameterisations for a and b, as well as for the
. . _>F + FF - . ..

reference diffusion P07 = 7 in Proposmon

Score-based generative modeling: Letting x4 be the target and fixing the forward drift a;, and,

motivated by Proposition parameterising the backward drift as b, = a; — s;, we recover the
SGM objectives in |Hyvirinen & Dayan| (2005); |Song & Ermon| (2019); |Song et al| (2021) from

D = Dy when P /¢ = PP, the variable drift component s; will represent the score o2V In p}.
Modifications can be obtained from the conversion formula (I3)), see Appendix|C.2]

Score-based sampling — ergodic drift: In this setting, v becomes the target and we fix b, to be
the drift of an ergodic (backward) process. Then choosing I'y 7 = p, ﬂyi = b allows us to recover
the approaches in [Vargas et al.|(2023a); Berner et al.| (2022). Possible generalisations based on
Framework [I’]include IWAE-type objectives, see Appendix

Score-based sampling — Follmer drift: Finally choosing b;(x) = x/t we recover Follmer sampling
(Appendix@]; Follmer, 1984} |Vargas et al.,|2023bj; [Zhang & Chen||2022;|[Huang et al.| |2021b).

3 LEARNING FORWARD AND BACKWARD TRANSITIONS SIMULTANEOUSLY

Recall from the introduction that complete flexibility in @ and b will render the minima of
D(H_P>“=“|F”7b) highly nonunique. Furthermore, the approaches surveyed at the end of the pre-
vious section circumvent this problem by fixing either P #¢ or P ***. However, to leverage the full
power of diffusion models, both ﬁu:a or F"’b should be adapted to the problem at hand. In this
section, we explore models of this kind, by imposing additional constraints on a and b. We end this
section by presenting our new CMCD sampler connecting it to prior methodology within VI (Doucet

et al., 2022b} (Geffner & Domkel 2023} [Papamakarios et al.|[2017) and OT where we can view CMCD
as an instance of entropy regularised OT in the infinite constraint limit (Bernton et al.,|[2019).

3.1 CONNECTION TO ENTROPIC OPTIMAL TRANSPORT

One way of selecting a particular transition between p and v is by imposing an entropic penalty, en-
couraging the dynamics to stay close to a prescribed, oftentimes physically or biologically motivated,
reference process. Using the notation employed in Framework [1| the static Schrodinger problem
(Schrodinger, (1931} [Léonard, 20144) is given by

7 (x, z) € arg min {DKL(T((LL', z2)||r(zx, 2)) : mx(x) = p(x), 72(z) = V(Z)}, (16)

w(x,z)

where r(x, z) is the Schrodinger prior encoding additional domain-specific information. In an
analogous way, we can introduce a regulariser to the path-space approach of Framework 1’ to obtain
the dynamic Schrodinger problem

T
Prcargmin By, ., [%iz/o las — fl|2(Y;) dt

PL* =v

; a7

that is, the driving vector field a; determining P* should be chosen in such a way that (i), the
corresponding diffusion transitions from p to v, and (ii), among such diffusions, the vector field a;
remains close to the prescribed vector field f;, in mean square sense. Under mild conditions, the
solutions to (I6) and exist and are unique. Further, the static and dynamic viewpoints are related
through a mixture-of-bridges construction (assuming that the conditionals r(z|x) correspond to the
transitions induced by f;), see (Léonard, [2014a), Section 2).

3Concurrently Richter & Berner|(2024) propose an akin framework to ours.
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Iterative proportional fitting (IPF) and the EM algorithm. It is well known that approximate
solutions for 7* (i, z) and P* can be obtained using alternating Dky,-projections, keeping one of the
marginals fixed in each iteration: Under mild conditions, the sequence defined by

7r2"+1(a:, z) = arg min {DKL(W(w,Z)||7T2n(:IJ, z)): me(x) = u(ac)} , (18a)
w(x,z)

72" 2(x, z) = arg min {DKL(7T(:B,z)||7r2"+1(:137 z)): my(z) = u(z)} , n>0, (18b)
7(x,z)

with initialisation 7°(z, 2) = r(x, 2), converges to 7* (x, z) as n — oo (De Bortoli et al.,2021), and
this procedure is commonly referred to as iterative proportional fitting (IPF) (Fortet, 1940; Kullbackl
1968; |Ruschendorf, |1995) or Sinkhorn updates (Cuturi, 2013). IPF can straightforwardly be modified
to the path space setting of (I7), and the resulting updates coincide with the Follmer drift updates
discussed in Section[C.3] see (Vargas et al.,[2021a) and Appendix [E.4]

To further demonstrate the coverage of our framework, we establish a connection between IPF and
expectation-maximisation (EM) (Dempster et al.l [1977)), originally devised for finding maximum
likelihood estimates in models with latent (or hidden) variables. According to Neal & Hinton| (1998)),
the EM-algorithm can be described in the setting from the introduction, and written in the form

Ont1 = argenlin Lpgr, ((bnv 0)7 Gyl = arg;nin LDy, (¢7 9n+1)a (19)

with Lp,, defined as in (3)). If the initialisations are matched appropriately, the following result
establishes an exact correspondence between the IPF updates in and the EM updates in (T9):

Proposition 3.1 (EM <= IPF). Assume that the transition densities p’(x|z) and q*(z|x) are
parameterised with perfect ﬂexibilityﬂ and furthermore that the EM-scheme is initialised at ¢q
in such a way that ¢*° (z|z) = r(z|x). Then the IPF iterations in agree with the EM iterations
in for alln > 1, in the sense that

(@, 2) = ¢? 02 (z|l@)p(x), for nodd, w"(x,z) = p2(x|z)v(2), for neven. (20)

From the proof (Appenix [E), it is clear that flexibility of parameterisations is crucial, and thus
EM <= IPF fails for classical VAEs, but holds up to a negligle error for the SDE-parameterisations
from Section[2.2] see also|Liu et al|(b). Under this assumption, the key observation is that replacing
forward- Dy, by reverse-Dkr, in one or both of and does not — in theory — change the
sequence of minimisers.

In practice favoring the EM objectives over IPF can offer an advantage as optimizing with respect
to forward-Dx, and backward-Dk1, encourages moment-matching and mode-seeking behavior,
respectively, and so an alternating scheme as defined in (I9) might present a suitable compromise
over optimizing a single direction of Dxkr,’s, empirical exploration is left for future work.

Whilst EM and IPF might seem appealing for learning a sampler they both require sequentially
solving a series of minimization problems, which we can only solve approximately; this is not only
slow but also causes a sequential accumulation of errors arising from each iterate (Vargas et al.
2021a; |[Fernandes et al.| 2021). In order to address both issues we will present a novel approach
(CMCD) that similarly to IPF learns both the forward and backward processes whilst preserving the
desired uniqueness property. However, in contrast to IPF it does so in an end-to-end fashion and
performs updates simultaneously. As an alternative in Appendix we also discuss a regularised
IPF objective and leave further empirical exploration for future work.

3.2 SCORE-BASED ANNEALING: THE CONTROLLED MONTE CARLO DIFFUSION SAMPLER

In this section, we fix a prescribed curve of distributions (7¢)c[o,7], Whose scores V Inm; (and
unnormalised densities 7;) are assumed to be available in tractable form; this is the scenario typically
encountered in annealed importance sampling (IS) and related approaches towards computing poste-
rior expectations (Neall, 2001; [Reich, [2011; |[Heng et al.| 2021; 2020; |Arbel et al., 2021} Doucet et al.,
2022a). The Controlled Monte Carlo Diffusion sampler (CMCD) learns the vector field V¢, in

dYt:(UQVIHWt(Yt)JrVQSt(Yt)) dt+0\@H>Wt, Y, ~ 7o, 21

*In precise terms, we assume that for any transition densities p(x|z) and g(z|x), there exist 6. and ¢.. such
that p(@]2) = p* (2]2) and g(x]2) = ¢°* (@]2).
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Algorithm 1 Controlled Monte Carlo Diffusions - Sampling and normalizing constant estimation

Require: mg, 7, 7, 0, K step-sizes Aty, network f ? trained via minimising Eq
Yo ~ mo
InW = —Inny(Yo)
fork=0to K —1do

Vi, ~ N (Yo, [¥ie + (02V 0, + £5)(%,) 5, 20%A1)
Y ¥y 02V inm, —f:”Hl)(nM)Atk,zazAtk)

(
InW=InW +In
/\/(Ytk_+1 |¥e, +(02Vinm, +fj)k)(Ytk)Atk,2a2Atk)

W =InW + Innmp(Yr)
return (Estimate of In Z ~ In W, Approximate sample Y7)

. . . . .= 2
so that li produces the interpolation from the prior g to the posterior 77, i.e., P72 Vinr+Ve _

¢, for all ¢ € [0, T]. Note that if 7, were constant in time (7; = 7g), then ¢ = 0 would reduce 21)
to equilibrium overdamped Langevin dynamics, preserving mg. With m; varying in time, V¢, can be
thought of as a control enabling transitions between neighbouring densities m; and ;4 s5¢.

To obtain V¢; we invoke Framework but restrict P77 to retain uniqueness. Proposition
motivates the choice by = (02VInm; + V) — 202V Inm = —02Vinm + V(Z)tE]leading to

ﬁCDMCD((ZS) -— D (ﬁﬂ-g’gjvm 7'r+V¢’ FWT,foﬂVln 7r+v¢> , (22)

which is valid for any choice of divergence D. The additional score constraint b, = a; — 202V In 7,
restores uniqueness in Framework [1] (see Appendix D] for a proof):

Proposition 3.2 (Existence and uniqueness). Under mild conditions on (m¢)e(o,11, admits a
(T¢-a.e.) unique minimiser ¢*, up to additive constants, satisfying Lovienp (¢*) = 0.

Given the optimal vector field V¢;, we can produce samples from 77 by simulating (2I). Following
Zhang & Chenl (2022); Vargas et al|(2023a),we can estimate Z in 7y = 77 /Zp unbiasedly via

qpir—o®v 1117r+Vq5] qpir—o*vinnirve

Z=E = Y), (23)

dﬁ)TroﬁQVln +Vo dﬁwg,oi’vm T+Vo*

where the expectation is taken with respect to (21)), and is valid for any (possibly suboptimal) V¢;.
The right-hand side, on the other hand, shows that optimality of V¢; yields a zero-variance estimator
of Z, as the statement holds almost surely in Y, without taking the expectation. To give a broader
perspective, we give the following slight generalisation of a well-known result from statistical physics:

Proposition 3.3 (Controlled Crooks’ fluctuation theorem and Jarzynki’s equality). Following Jarzyn-
ski| ((1997); |Chen et al.|(2019), define work and free energy as Wr(Y) := — fOT 20, In7,(Y;) dt,
Fi = —02InZ; := o In(7y /7). Then, we have the controlled Crooks’ identity,
dTP)ﬂ'O,O'ZV Inm+Ve¢
deT,fﬂv Inm4+Ve¢

)<Y>= exp (— 5 (Fr—Fo) + ZWr(¥)+ CHY)),

where C?(Y) =24 OT Vo (Y:) Vinm(Y:)dt — fOT A¢:(Yy)dt. By taking expectations and
¢ = 0, this implies Jarzynski’s equality Ew | 2010 rive [f%WT} = Zr/Z.

The proof uses Propositionto compute the RND dP ™ 0V in V) dF”T’*"QV In7m+Ve followed
by applying Itd’s formula to ¢ —In# (Y3), see Appendix For ¢ = 0, we recover Crooks fluctuation

theorem (Crooks, |{1999)), but the additional control allows CMCD to suppress said fluctuations by

adjusting the interaction term C? (Y"). Indeed, prior works (Neal, 2001; (Chopin, [2002; |Vaikuntanathan

& Jarzynski, 2008} Hartmann et al.l 2019; Zhang| |2021) have used the Jarzynski equality to estimate
Z via importance sampling, but this approach might suffer from high variance, see (Del Moral et al.,

>Note the additional factor of 2 in Nelson’s relation due to the noise scaling a\/iﬁwt in .



Published as a conference paper at ICLR 2024

2006), (Stoltz et al., 2010l Section 4.1.4). In contrast, the CMCD estimator version of @I) achieves
zero variance if trained to optimality (see Appendix for a convenient discretised version).
Finally, we would like to highlight that|Zhong et al.|(2023)) concurrently proposes this generalisation
of Crook’s identity using different techniques in their sketch.

Our next result connects CMCD to Section[3.1] showing that minimising can be viewed as jointly
solving an infinite number of Schrodinger problems on infinitesimal time intervals:

Proposition 3.4 (infinitesimal Schrodinger problems). The minimiser ¢* can be characterised as
Sollows: For N € N, partition the interval [0, T into N subintervals of length T /N, and on each
subinterval [(i — 1)T /N, iT/N], solve the Schridinger problem with marginals j1 = 7;_1y7 /N,
v = myp/n and prior drift f; = V In . Concatenate the solutions to obtain the drift VoN), defined
on [0,T). Then, VoN)—=V$ as N — oo in the sense of L*([0, T] x R%, 1) (proof in Appendix
Note the similarity of this interpretation to the sequential Schrodinger samplers of [Bernton et al.
(2019). Making specific choices for D in[22] we establish further connections to other methods:

1. For D = Dk, direct computation (see Appendix [D.T)) based on Proposition [2.2] shows that

R dﬁﬂo,02V1n7r+v¢
LDKL (¢) ]EYNTP)"of'zV“‘"*V"’ In d%ﬂ"r,’70'2vlnﬂ'+v¢ (Y)

T T
:El02/|V1n7rt(Y})2dt+g\1/§/ (JQVInWt—qut)(Yt).(EWt — In77r(YT)| +const.
0
’/To 1/0 H ./\/ Y;&k+1|Ytk (V]Hﬂ'tk +Vln¢m)(Ytk)Atk,202Atk) (24)
NYtk‘Y;‘/k+1 (vlnﬂ-thA vln¢tk+1)(lftk+1)Atk72O‘2At ) ’

the time-discretisation in the third line is derived in Appendix [D.5] Our goal is then to numerically
minimize CCll\(/ICD(qS) wrt to ¢ (for a numerical minimisation scheme see Algonthm . Note the first
line in (24)) is akin to the optimal control type objectives of Follmer and DDS samplers recalled at the
end of Section@ see also (Berner et al.}[2022). Setting ¢ = 0 in the third line recovers Unadjusted
Langevin Annealing (ULA), see, e.g., eq. (14) in (Thin et al.l 2021) or eq. (21) in (Geffner & Domke}
2023)); hence, we can view CMCD as a controlled version of ULA. Setting ¢ =0 only in the numerator
leads to Monte Carlo Diffusion (MCD), see Algorithm 1 and eq. (34) in (Doucet et al., 2022al).
Finally, action matching (Neklyudov et al.,[2023) can be recovered from D=Dx;, and Framework.

by choosing the reference PTon —EFT’V in Proposition E 2| appropriately, see Appendix
2. For the log-variance divergence Dv,,(Q,P) =Var (ln @) see Appendlxl we obtain

chfCD(@:Varén”T (Yr) /Agzbt Y;) t—af/Vlnwt Yt)Oth—a/Nlnm () dé

see Appendix [D] Here, odW; denotes Stratonovich integration, and the variance is taken with respect
to samples from (ZI). In the limit ¢ — 0, log-Var CMCD enforces an integrated version of the
instantaneous change of density formula 9 In ¢ (Y;) = —A¢:(Y}) for continuous-time normalising

flows of the form Y} = V:(Y:), (Papamakarios et al., 2021}, Section 4).

Remark 4 (Further related work). The task of learning the vector field V¢, so that reproduces
(Wt)te[o,T] has been approached from various directions. [Reich|(2011)); Heng et al.| (2021)); Reich
(2022); |Vaikuntanathan & Jarzynski (2008) explore methodologies that exploit the characterisation
of V¢, in terms of the elliptic PDE in Appendix Arbel et al| (2021)) propose to leverage
normalising flows sequentially to minimise KL divergences between implied neighboring densities.
In an appropriate limiting regime, they recover the SDE (21)), see Remark [9] These approaches
approximate V¢, sequentially in time, whilst CMCD learns (V¢;).c[o, 7 ‘all-at-once’.

4 EXPERIMENTS

We now empirically demonstrate the performance of the proposed CMCD sampler in both
underdamped (detailed in Appendix [D)) and overdamped (CMCD (OD)), Appendix [D.6) formulations
on a series of sampling benchmarks. We first replicate the benchmarks from|Geffner & Domke] (2023)
on 6 standard target benchmark distributions. Following the experimental methodology in|Geffner &
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Figure 1: Figure panes a) and b) report ELBOs across methods and targets following the experimental
setup in |Geffner & Dombke| (2023)), the (OD) and (UD) columns group over and under-damped
methods seperately. Figure c) reports IS In Z estimates and sample quality (where available) using
eOT. Higher ELBO and In Z denote better estimates, lower W, signifies better sample quality.

Dombkel (2023), we compare against two underdamped baselines, Unadjusted Langevin Annealing
(ULA) (Wu et al., [2020; [Thin et al., 2021) and Monte Carlo Diffusion (MCD) (Doucet et al., 2022b);
and two overdamped baselines, Uncorrected Hamiltonian Annealing (UHA) (Geffner & Domke,
2021} Zhang et al.,|2021) and Langevin Diffusion Variational Inference (LDVI) (Geffner & Domke,
2023)). Furthermore, we include comparisons of In Z estimation on two datasets with known partition
function, the funnel and gmm, and compare against baselines from Vargas et al.| (2023al)), PIS (Barr
et al., [2020; | Vargas et al., 2023bj Zhang & Chen, [2022), DDS (Vargas et al., 2023a), and Sequential
Monte Carlo Sampler (SMC) (Del Moral et al., 2006; Zhou et al.| 2016).

We report the mean ELBO achieved by each method over 30 seeds of sampling, for Euler discretisation
steps K € {8,16,32,64,128, 256}, comparing the underdamped and overdamped baselines to their
respective CMCD counterparts in Figure [T} We see that both overdamped and underdamped CMCD
consistently outperform all baseline methods, especially at low K, and in fact, across most targets
overdamped CMCD outperforms the underdamped baselines. Figure [I] also reports In Z for two
target distributions with known Z, comparing against PIS, DDS, and SMC. Again, CMCD recovers
the log-partition more consistently, even at low K. Finally, as another measure of sample quality, we
report the entropy-regularised OT distance (W) between obtained samples and samples from the
target for funnel and gmm. Hyperparameter tuning and other experimental details can be found in
Appendix |E and we provide a GitHub repository to reproduce our results

5 DISCUSSION

Overall we have successfully introduced a novel variational framework bridging VI and transport
using modern advances in diffusion models and processes. In particular, we have shown that many
existing diffusion-based methods for generative modelling and sampling can be viewed as special
instances of our proposed framework. Building on this, we have developed novel objectives for
dynamic entropy regularised transports (based on a relationship between the EM and IPF algorithms)
and annealed flows (with connections to fluctuation theorems due to Crook and Jarzynski, rooted in
statistical physics). Finally, we have explored the CMCD inference scheme obtaining state-of-the-art
results across a suite of challenging inference benchmarks. We believe this experimental success is
partly due to our approach striking a balance between parametrising a flexible family of distributions
whilst being constrained enough such that learning the sampler is not overly expensive (Tzen &
Raginsky, [2019b; |Vargas et al.| |2023c)). Future directions can explore optimal schemes for the
annealed flow m; (Goshtasbpour et al.||2023)) and alternate divergences (Niisken & Richter, 2021}
Richter & Berner, 2024} Midgley et al., 2022]).

Shttps://github.com/shreyaspadhy/CMCD
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A STOCHASTIC ANALYSIS FOR BACKWARD PROCESSES

In this appendix, we briefly discuss background in stochastic analysis relevant to the SDEs in (12)),
here repeated for convenience:

AY; =, (V) dt+ 0 d Wi, Yo~ (259)
dY; = b (Y;)dt + 0 d Wi, Yo ~w. (25b)

Recall that the forward It6 differential g in is far more commonly denoted simpl by d, and
theory for the forward SDE is widely known (Karatzas et al.,|1991} @ksendal, 2003). In contrast,
reverse-time SDEs of the form (23b) are less common and there are fewer textbook accounts of their
interactions with forward SDEs. We highlight |Kunital (2019) for an in-depth treatment, and alert the
reader to the fact that ‘backward stochastic differential equations’ as discussed in|Zhang|(2017);|Chen
et al.|(2022), for instance, are largely unrelated. We therefore refer to @]) as a ‘reverse-time’ SDE.

7...but in this paper we stick to the notation d to emphasise the symmetry of the setting.
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Remark 5 (Notation). We deliberately depart from some of the notation employed in the recent
literature (see, for instance, [Huang et al| (2021a)); [Liu et al.| (b)) by using Y; in both and (25D)),
and not introducing an auxiliary process capturing the reverse-time dynamics. From a technical
perspective, this is justified since (Y;)o<¢<7 merely represents a generic element in path space, and

full information is encoded in the path measures Q** = P #@ and P*"* = F"vl’. Importantly, placing
(254) and (25b) on an equal footing seems essential for a convenient formulation of Proposition [2.2]
Slightly departing from the VAE-inspired notation from Section [2.1] we equivalently refer to these

path measures by ﬁu,a and ﬁ”’b, highlighting the symmetry of the setting in .

Intuitively, @ can be viewed as continuous time limits of the Markov chains defined in @I) or, in
other words, the Markov chains () are the Euler-Maruyama discretisations for (23), see Kloeden
et al.| (1992, Section 9.1). Throughout, we impose the following:

Assumption A.1 (Smoothness and linear growth of vector fields). All (time-dependent) vector fields
in this paper belong to the set

U:= {a € C°°([0, T]xR%R?) :  there exists a constant C' > 0

such that ||a; () — at(y)|| < Cllz — y||, forallt € [0,T], x,y € Rd}.

The preceding assumption guarantees existence and uniqueness for (25a) and (25b), and it allows
us to use Girsanov’s theorem in the proof of Proposition (Novikov’s condition can be shown
to be satisfied, see [@ksendal| (2003} Section 8.6)). Furthermore, Assumption is sufficient to
conclude Nelson’s relation (Proposition @, see [Haussmann & Pardoux|(1985)); Millet et al.[(1989);
Follmer (2006b) and the discussion in|Russo & Vallois| (1996). Having said all that, it is possible
to substantially weaken Assumption with more technical effort. Moreover, we can replace the
constant ¢ > 0 by ¢ : [0,7] x R? — R throughout, assuming sufficient regularity, growth and
invertibility properties, and amending the formulas accordingly.

The precise meaning of (25) is given by the integrated formulations

t t
Yt=Y0+/ as(xfs)ds+/ cdw,, Yo ~ (27a)

0 0

T T

Yt:YT—/ bsm)ds—/ caw,, Y ~ v, 27b)

t t

where the forward and backward integrals need defining. Roughly speaking, we have

) X, dZ.= lm Z X, (Zi,, — Z1,), (28a)
to X, dz, = ‘Aliglof ;th”rl ’ (th‘+1 - th‘)7 (28b)

see Remark for ‘appropriate’ processes (X;)o<i<r and (Z;)o<i<7, and where the limit At — 0
of vanishing step sizes needs careful analysis (see Remark [§| below). The most salient difference
between (254) and (25b) is the fact that X, is replaced by X, , in (28b).

Remark 6 (Convergence of the limits in ). If we only assume that X, Z € C([to,t1]; RY),
possibly pathwise, that is, deterministically, then the limits in (28 might not exist, or when they do,
their values might depends on the specific sequence of mesh refinements. The following approaches
are available to make the definitions (28) rigorous:

1. Itd calculus (see, for example, Revuz & Yor (2013, Chapter 9)) uses adaptedness and
semimartingale properties for the forward integral in (28a), but note that the definition is not
pathwise (that is, the limit (28a)) is defined up to a set of measure zero). For the backward
integrals in and, importantly for us, in (64), it can then be shown that the relevant
processes are (continuous) reverse-time martingales (see |[Kunital (2019)) for a discussion of
the corresponding filtrations). The latter property is guaranteed under Assumption[A.T] see
the discussion around Theorem 2.3 in|Russo & Vallois| (1996)).
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2. Follmer’s ‘It6 calculus without probabilities’ (Follmer, |2006a)) is convenient, since it allows
to us to perform calculations using and Proposition [2.2] without introducing filtrations
and related stochastic machinery. The caveat is that the results may in principle depend on
the sequence of mesh refinements, but under Assumption[A.T] those differences only appear
on a set of measure zero, see Russo & Vallois|(1995); [Follmer & Protter| (2000).

3. Similarly, the integrals in (28) can be defined in a pathwise fashion using rough path
techniques, see [Friz & Hairer| (2020} Section 5.4).

For the current paper, the following conversion formulas are crucial,
t t
<_
/ X, dZs—/ X, -d2, = (X,2), (29a)
0 0

ot t t
/XSFZS+/ Xs~3zs:2/ X, 0 Z., (29b)
0 0 0

where (X, Z) is the quadratic variation process (if defined, see [Russo & Vallois| (1995)); see in
particular equations (3) and (4) therein), and o denotes Stratonovich integration. For solutions to (23],
we obtain from (29a). In particular, we can often trade backward integrals for divergence terms
(see Appendix [C.I)), using the (backward) martingale properties

t
E |:/ ft(}/;g) . H>Wt:| = 0, if (YE)OStST solves " (303)
0

T
/ L) - AW, | =0, i (Y)ocrer solves‘ (30b)
t

B VARIATIONAL INFERENCE AND DIVERGENCES

E

Various concepts well-known in the variational inference community have direct counterparts in the
diffusion setting. In this appendix we review a few that are directly relevant to this paper.

Maximum likelihood. Framework [T]with D = Dy, leads via direct calculations to

=ELBO,(¢,0)

0 124
L0 (0,0) = ~Eorpu(a) [/ IHW

so that maximising Eg .., (z) [ELBO. (¢, 0)] is equivalent to minimising Lp,, (¢, 0).

q4’(dzlw)] + / In pu(z) p(de), 31

However, the traditional approach (Blei et al.| [2017; |Kingma et al.,[2019) towards the evidence lower
bound (ELBO) in is via maximum likelihood in latent variable models. Using the notation and
set-up from the introduction, one can show using Jensen’s inequality (or dual representations of the
KL divergence), that

In (/pg(w,z) dz) = Inpg(x) > ELBO4 (¢, 0), (32)

with equality if and only if g4(z|z) = pe(z|z). The bound in motivates maximising the
(tractable) right-hand side, performing model selection (according to Bayesian evidence) and posterior
approximation (in terms of the variational family g4(z|x)) at the same time. The calculation in
shows that this objective can equivalently be derived from Framework [T]and connected to the KL
divergence between the joint distributions ¢4 (, z) and pg(x, 2).

Reparameterisation trick (Kingma & Welling, 2014; Rezende et al., 2014). For optimising
ELBO. (¢, 0), it is crucial to select efficient low-variance gradient estimators. In this context, it
has been observed that reparameterising z ~ g, (z|z) in the form z = g(¢, ¢, x), see Kingma et al.
(2019[ Section 2.4.1), substantially stabilises the training procedure. Here, € is an auxiliary random
variable with tractable ‘base distribution’ that is independent of ¢ and x, and g is a deterministic
function (transforming € into z), parameterised by ¢ and . We would like to point out that many
(although not all, see below) objectives in diffusion modelling are already reparameterised, since the
SDEs transform the ‘auxiliary’ variables (W})o<<r into (Y;)o<i<7. With this viewpoint, the
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vector field a; corresponds to the parameter ¢, (W})o<¢<7 corresponds to €, and g corresponds to
the solution map associated to the SDE , sometimes referred to as the It6 map. In this sense, the
objectives , and 1@} are reparameterised, but E\C/%CD from Sectionis not if the gradients
are detached as in (Nisken & Richter, 2021 Richter et al., [2020; Richter & Berner, [2024)). We
mention in passing that sticking the landing (Roeder et al., | 2017) offers a further variance reduction
close to optimality, and that the same method can be employed for diffusion objectives, see|Vargas
et al.|(2023Db); Xu et al.| (2021).

Reinforce gradient estimators. As an alternative to the KL-divergence, Niisken & Richter| (2021)
investigated the family of log-variance divergences

Dilallp) = Vira-o (1 (@) 33)
D

parameterised by an auxiliary distribution u, in order to connect variational inference to backward
stochastic differential equations (Zhang| 2017). The fact that gradients of do not have to be
taken with respect to x (see Remark (Niisken & Richter, 2021} Richter et al., [2020)) reduces the
computational cost and provides additional flexibility in the choice of u, but the gradient estimates
potentially suffer from higher variance since the reparameterisation trick is not available. The latter
drawback is alleviated somewhat by the fact that particular choices of u can be linked to control
variate enhanced reinforce gradient estimators (Richter et al.,|2020) that are particularly useful when
reparameterisation is not available (such as in discrete models). We note that the same divergence has
also been used as a variational inference objective in [El Moselhy & Marzouk| (2012).

Importance weighted autoencoders (IWAE). Burda et al.|(2015) have developed a multi-sample
version of ELBO, (¢, #) that achieves a tighter lower bound on the marginal log-likelihood in .
To develop similar objectives in a diffusion setting, we observe that for each K > 1,

K
1 d
DI =5, (35 300 )
i=1

defines a generalised KL divergencﬂ that reproduces the IWAE lower bound as per Framework
in the sense of equation (31). To the best of our knowledge, the precise formulation in (34) is new,
but similar to the previous works [Hernandez-Lobato et al.| (2016); Li & Turner| (2016)); Daudel et al.
(2022)). We exhibit an example of applied in a diffusion context in Section see Remark [7]

C CONNECTIONS TO PREVIOUS WORK

_>
C.1 DISCUSSION OF EQUIVALENT EXPRESSIONS FOR Dxr,(P WLHF”J’)
Notice that we can realise samples from F”’b both via the reverse-time SDE in (12b) or via its time
reversal given by the following forward SDE (Nelson, |1967; | Anderson, |1982; Haussmann & Pardoux)
1985)):

~ ~ ~ — ~
dy; = (bT_t(Yt) —0®VIn ?;’it(Yt)) dt+odW,,  Yo~u, (35)

LS S . . . = . . R
using Y; := Yr_;. This allows us to obtain an expression for Dkr,( ]P’“’“|F”’b) via Girsanov’s
theorem:

% v
DKL(P”’"’HFW)) = DKL(?O’Z)HV) +E

= | ) - (bt - Py T \M |
(36)

However there are several terms here that we cannot estimate or realise in a tractable manner, one
being the score V In ??’b and the other being sampling from the distribution %g’b. H

¥Indeed, by Jensen’s inequality, we have that Dgiﬂ)(qu) > Dgi)(qu), so that in particular ¢ # p

implies D%i)(qﬂp) > 0.
“When Y} is an OU process and ;. is Gaussian we are in the traditional DDPM setting (Song et al.,[2021) and
these two quantities admit the classical tractable score matching approximations
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In order to circumvent the score term, the authors [Vargas et al.| (2021b); |Chen et al.| (2022)) use
the Fokker-Plank (FPK) equation and integration by parts, respectively, trading of the score with a
divergence term, whilstHuang et al.|(2021a)) use a variant of the Feynman Kac formula to arrive at an
equivalent solution. From Proposition[2.2] we can avoid the divergence entirely and replace it by a
backwards integral (making use of the conversion formula and the fact that the ensuing forward
integral is zero in expectation). As hinted at in Remark 3] this replacement might have favourable
variance-reducing properties, but numerical evidence would be necessary.

C.2 SCORE-BASED GENERATIVE MODELING

Generative modeling is concerned with the scenario where p() can be sampled from (but its density
is unknown), and the goal is to learn a backward diffusion as in (I2b) that allows us to generate
further samples from p(x), see|Song et al.|(2021). We may fix a reference forward drift a;, and,
motivated by Proposition parameterise the backward drift as b; = a; — s¢, so that in the case

when P #@ = P¥? the variable drift component s; will represent the score 2V In p}“. When the
diffusion associated to a; is ergodic and 7' is large, P#% = P requires that v(z) is close to the

corresponding invariant measure. Choosing v, = a4, and, for simplicity ¢ = 1, direct calculations
using Proposition[2.2] show that

N T T
Lism(s) := DKL(IP’”’“HF”"I’S) =Ey Fua lé/ s7(Y;) dt +/ (V- 5)(Yy) dt| + const.
0 0

(37)

recovers the implicit score matching objective (Hyvérinen & Dayan) 2005)), up to a constant that does
not depend on s;.

Proof. We start by noticing that the contributions in and (I4b) do not depend on s, and can
therefore be absorbed in the constant in (37)) Notice that the precise forms of I'g, I'r and v are left
unspecified or unknown, but this does not affect the argument. We find

T
- —
D (Bra|[Pro) =B, =, V su(¥i) - (AY; = § (20— s0) (Yi) dt) | + const.
0

T - X
=K s¢(Yy) - (a d W + 55(Y7) dt) + const.
0

T T
~B|4 [ amars [

-+ const.,

where in the first line we use Propositiontogether with by = a; — s, and 7y, = ay, and to proceed

to the second line we substitute d Y; using the SDE in (12a). The last equality follows from the
conversion formula between forward and backward It6 integrals, see , and the fact that forward
integrals with respect to Brownian motion have zero (forward) expectation, see (30a). O

Notice that the nonuniqueness in Framework 1’ has been circumvented by fixing the forward drift a;;
indeed Ligy is convex in s, confirming Note that using integration by parts, Lig\ is equivalent to
denoising score matching (Song et al., [2020; [2021)):

o 1 T a 2
D ( ]}D/J«,QHFV}U«*S) =Ey Fua W/ ‘ 5¢(Y:) — Vin pﬁ"o (Y}|Y0)H dt| + const.. (38)
0

Framework accommodates modifications of ; in particular the divergence term in can be
replaced by a backward integral, see Appendix [C.I|and Remark 3] Note that the settings discussed in
this section are also akin to the formulations in |[Kingma et al.|(2021); [Huang et al.|(2021a)).

Finally, it is worth highlighting that this setting is not limited to ergodic models and can in fact
accommodate finite time models in the exact same fashion as the Follmer drift is used for sampling

%
(Section | by using a Doob’s transform (Rogers & Williams, |2000) based SDE for P #¢ as
opposed to the classical VP-SDE see Example 2.4 in|Ye et al.[(2022).
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C.3 SCORE-BASED SAMPLING

Consider the setting when v(z) is a target distribution that can be evaluated pointwise up to a
normalisation constant. In order to construct a diffusion process that transports an appropriate
auxiliary distribution u(x) to v(z), one approach is to fix a drift b; in the backward diffusion

ﬁ
li and then learn the corresponding forward diffusion 1) by minimising a — D(P W‘|F”vb).

Tractability of this objective requires that ;1 := G’b be known explicitly, at least approximately. In
the following we review possible choices.

The Follmer drift. Choosing b;(z) = x/t, one can show using Doob’s transform (Rogers &
Williams|, {2000, Theorem 40.3(iii)), that ?g’b(z) = §(x), for any terminal distribution v(z). Hence,

minimising a — DKL(ﬁ‘S“"ﬂ v:%) Jeads to a tractable objective. In particular consider the choice
Iy = dg, ¥* = 0, corresponding to a standard Brownian motion, then it follows that vy~ = Z,

i
I'r = N(0,To?) and thus via Proposition
e 0,7c?
7/ a®(Y;) dt +ln<dw>(YT)
0 dv

in accordance with (Dai Pral [1991} | Vargas et al.,|2023b}; |Zhang & Chen, [2022). For further details,
see [Follmer] (1984); [Vargas et al.| (2023b); [Zhang & Chen|(2022); [Huang et al.|(2021b). As hinted at
in Appendix B| replacing Dk, in by the log-variance divergence leads to an objective that
directly links to BSDEs, see (Niisken & Richter;, 2021} Section 3.2).

Dxp(P 50 Q|F” b Ey $ua + const.,  (39)

Ergodic diffusions. |Vargas et al.|(2023a)); Berner et al.| (2022) fix a backward drift b, that induces

an ergodic backward diffusion, so that for large 7', the marginal at initial time F bo is close to
the corresponding invariant distribution, and in particular (almost) independent of »/( m Defining

W= %t 0»| Vargas et al. (2023a) Berner et al.|(2022) set out to minimise the denoising diffusion

sampler loss Lpps(f) := Dkr(P Pubto’s |$” %). Choosing the reference process to be To 7 = 1,
4% = b (that is, the reference process is at stationarity, with invariant measure /(2 )), direct calculation
based on (T4) shows that

Lops(f) = EYNWHC,Qfl /f dt+1n(ddry )(YT)], (40)

Remark 7 (IWAE-objective). In line with (34), we may also consider the multi-sample objective

g 2 v
L) () = D) (Brbees Py

=By xR [111 <K§ XP( / S dt +n (dj‘VT)(YT)>>]

Proof. We start by notic1 that the choice v, bt cancels the terms in ( , and the choice I'y =
cancels the first term in .Usinga; =b,+ 0 2 f,, we therefore obtam

Lops(f) = DKL(?“W ) @la)

T
—E [az /0 Fe(Ye) - ((be + fo)(Ya) dt — 5(2be + fo)(Y3) dt) +In (djf) (Yﬂ}

El / F2(Y)dt +In (ddFUT) (YT)]. (41b)

As is implicit in [Berner et al.| (2022), it is also possible to choose v+ = 0 for the reference process,
with [’y = 'y = Leb, the Lebesgue measure on R?. We notice in passing that although the Lebesgue

Ovargas et al.| (2023a) chose a (time-inhomoegenous) backward Ornstein-Uhlenbeck process, so that F’{:bo
is close to a Gaussian, but generalisations are straightforward.
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measure is not normalisable, it is invariant under Brownian motion (the forward and backward drifts
are both zero), and the arguments can be made rigorous by a limiting argument (take Gaussians
with diverging variances), or by using the techniques in|Léonard|(2014a, Appendix A.1). By similar
calculations as above, we obtain

T T
Lpps(f) =E [02/0 ff(Yt)dt—i/o bt(Yt)-FWtHnu(n)—lnu(YT)] (42a)

T T
:E[UQ/ ff(Yt)dt—/ (V- b:)(Y;) dt —Inv(Y7)| + const., (42b)
0 0

where we overload notation and denote the Lebesgue densities of p and v with the same letters. In
the second line we have used the conversion formula in @]), together with the fact that the forward
Itd integrals are forward martingales (Kunital 2019), and therefore have zero expectation. Comparing
and , we notice the additional divergence term, due to the fact that the choice v~ = 0 does
not cancel the terms in (64). See also the discussion in Appendix [C.T} O

Finally we note that whilst the work in Berner et al.| (2022) focuses on exploring a VP-SDE-based
approach which is ergodic, their overarching framework generalises beyond ergodic settings, notice
this objective is akin to the KL expressions in |Vargas| (2021, Proposition 1) and |Liu et al.| (a,
Proposition 9).

C.4 ACTION MATCHING (NEKLYUDOV ET AL.,|2023)

Similar to our approach in Section Neklyudov et al.| (2023) fix a curve of distributions (7¢)¢co,77-
In contrast to us, they assume that samples from 7; are available, for each ¢ € [0, T] (but scores and
unnormalised densities are not). Still, we can use Framework to rederive their objective:

Akin to the proof of Proposition 3.2} under mild conditions on (7;)¢c(o, 7], there exists a unique vector
field V¢; that satisfies the Fokker-Planck equation

Oy +V - (mV]) = T Amy. (43)

We can now use the reference process ﬁ’””vw(that is, Tg = 70, v, = V¢i, I'r = 7y, v, =
Vi — oV In ) to compute the objective

w — DKL(ﬁﬂo,Vw | ‘FTA’T,V’Ll)chZV In 71'),

relying on the same calculational techniques as in Sections [C.2] and [C.3] (the particular choice of
reference process cancels the terms in (I4a)). Notice that the parameterisation in this objective
constrains the target diffusion to have time-marginals 7, just as in Section[3.2} By direct calculation,
we obtain (up to a factor of 2/02) the action-gap in equation (5) in [Neklyudov et al.[(2023). Indeed,
we see that

%
- d P 7mo.Vy
DKL( Pm,kuﬁm,vwfﬁvm 7r) _ ETp)wg,Vw [111 < >

T T
]E[l / (Vi — Veoy)* (Vi) dt — L / (Vi = Vo) (%) - AW,
0 0

- /T Vinm(Ye) - (Vo — V;)(Yy) dt]
0

=E

)

1 r *\ 2
1 / (Vo — V)2 (Vi) dt
0
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where in the last line we have used the conversion formula (I5) together with (30a) to compute

T
2|4 [ (Vo - Vo) Twi| —x
0

/0 <v-<wt—v¢:>><¥t>dt]

T T
_ / / (V- (Vi — V) (@)mi(dar) dt = — / / (Vb — Vo) (@) - V Inm (), (da) di
0 R4 0 Rd

=E

/ Y m(¥) - (Ve - VD) (%) dt]
0

and cancel the two last terms in the penultimate line.

D CONTROLLED MONTE CARLO DIFFUSIONS (SECTION [3.2))

D.1 DERIVATION OF LEMCD
KL

The proof uses Proposition choosing Iy = I' to be the Lebesgue measure, with y* =y~ =0
(but notice that o in needs to be replaced by /2 due to the scaling in ). We compute

- 2
d P mo.o Vinn+Ve
LIPS =By 20 2w inns o [m < ) (Y)]

d%ﬂ"[‘,—azvhl +Vo
=E [ln 7T()(1/0) —In WT(YT)]

B T
+E |5k / (0*V I+ V)(¥) - (dYs - L(0*Vinm + Vo) (V) dt)]
0

[ T
~E |5k [ (~o*Vinm + Vo) (%) - (Y - J(-o*Vinm + V6, (V) dt)]
0

—F [In 70(Yp) — In 7 (Ye)]

i T
+E ﬁ/ (02V1n7rt+V¢t)(Yt)~H>Yi] —E
0

T -
72(172 / (—chVlnﬂ't + V(bt)(Y;g) -d K
0

- LE

o

T
/ (0*Vinm, - V) (Y;) dt]
0
=E [ln’iTo(}fo) — lan(YT)]

+E

T T
02/ |V Inmy (Y;)[*dt + %ﬁ/ (e*VInm — V) (V) - Hwtl :
0 0

where in the last equality we have inserted the dynamics (2I)) and used the martingale property (30a).
Notice that the expectation of the backward integral is not zero, see Appendix [A]

D.2 DERIVATION OF L{MCD

In this section, we first verify the expression for LMD in Section 3.2} using Proposition 2.2} and
choosing 'y = 'y to be the Lebesgue measure, v+ = v~ = 0. We recall that although the Lebesgue
measure in not normalisable, the arguments can be made rigorous using the techniques in|Léonard
(2014a, Appendix A).
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The Radon-Nikodym derivative (RND) along (21) reads

< dT}]?Trg,(ﬁVlﬁ 7+Vo

In
dFTFT,fo'QV Innm+Ve¢

) (Y) = (Inm)(Yo) — (In77)(Y7)

T
4oL (02v1nwt+v¢t)(y;)((02v1nm+v¢>t)(Yt)dt+ﬁ07Wt—%(02v1n7rt+v¢t)(yt)dt)

202
0

T
—Tiz/é—a?vm 7rt+V¢t)(Y})((02V1n 7 +Voy)(Yi) dt+\/§U<EWt—%(V¢t—02V1n 7)(Yz) dt)

T
= () (¥0) = (nmp)(¥7) +0° [ [Vinm (¥ i

T T —
+ = /Vlnm(n)?Wt+/ Vinm(Y;) - AW,
0 0

T N T -
+ - Vo(Yy) - dW; — Vo(Yy) - dW; |
V2 \ Jo 0
Using (29D)), we obtain
T T - T
xa (/ v1n7rt(Yt)?Wt+/ Vinm(Yy) - th> - \/io/ Vinm(Y;) o AW,
0 0 0
Furthermore, from we see that
T N T o T
%\/ﬁ (/ VoY) - dW; —/ Vo(Yr) - th> = —/ Agy(Yr) dt, (47)
0 0 0

from which the claim follows.

Remark 8 (Estimating LMD without second derivatives). Using (47), we can equivalently write

the RND as

< dTlJ?Wo,O’ZVIII 7+Vo

: Y) = Inmp(Yr) — Inmo (Y,
ndFﬂT,02V1nﬂ+V¢>( ) nﬂ-T( T) nﬂ-O( 0)

T T
1 dw — 1
1 (/0 Vo(Y;) - dW; /O VoY) th>

T T
_U\@/Vlnm(Yt)oth—UQ/ IV In 7, (V3)[2 dt,
0 0

so that LSMEP can be estimated without the need to evaluate A¢. Note that the identity (47) is
similar to a finite difference approximation of A¢ along the process Y;.

D.3 EXISTENCE AND UNIQUENESS OF THE DRIFT

Before proceeding to the proof of Propostion we state the following assumption on the curve of
distributions (7¢)¢cjo,77:

Assumption D.1. Assume that 7 € C*°(]0, 7] x R% R), and that for all ¢ € [0, T
1. the time derivative 0,7, is square-integrable, that is, 9,7 (¢, ) € L?(R%),

2. m; satisfies a Poincaré inequality, that is, there exists a constant C; > 0 such that
Vars ()< G [ Vs, (49)
Rd

forall f € C}H(R?).
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Note that at the boundary 9[0,7] = {0,7T}, we agree to denote by 9;m; the ‘inward-pointing
derivative’ and interpret C*°([0, 7] x R%;R) in that way. We remark that the Poincaré inequality
@I) is satisfied under relatively mild conditions on the tails of m; (for instance, Gaussian tails) and
control of its derivatives, see, e.g.,[Bakry et al.| (2014, Chapter 4). Under Assumption we can
prove Proposition |3.2|as follows:

Proof of Proposition[3.2] The Fokker-Planck equation associated to (21) is given by
afﬂ't + V. (th¢t) =0. (50)

The operator ¢ — —V - (m:V¢) is essentially self-adjoint in LQ(Rd) and, by (49) coercive on
LQ(]Rd) ={f € L*R?): [ fda = 0}. Therefore, there exists a unique solution qﬁt € LZ(R%) to
, for any ¢ € [0, T]. This solution is smooth by elliptic regularity. By Proposition [2. and our

general framework, any minimiser qu of 2)) necessarily satisfies as well. We then obtain
V- (1Y (¢ — ) =0

Multiplying this equation by ¢; — 5,5, integrating, and integrating by parts shows that [ ||V (¢ —
#)||? dm; = 0, proving the claim. O

Remark 9 (Relation to previous work). Note we can carry out a change of variables to equation (50),
Orlnmy = —m; H(Vry - Vo + mA¢) = —Vinm - Vo — Ao,
yielding the PDE
O¢ylnmy +Vinm - Vo + Agp =0,

which when considered in terms of the unnormalised flow 7; = Z;m; coincides with PDE in
Vaikuntanathan & Jarzynski (2008)); |Arbel et al.| (2021):

athlﬁ't —‘rVIHﬁ} . V¢+A¢—Em[8tlnfrt] =0.

In particular, we note that the Markov chain proposed in|Arbel et al.|(2021)) converges to our proposed
parameterisation in equation (see equation (12) in|Arbel et al.|(2021)).

D.4 INFINITESIMAL SCHRODINGER BRIDGES (PROOF OF PROPOSITION|[3.4))

Throughout this proof, we assume that the Schrodinger problems on the intervals [¢7'/N, (i+1)T/N],
i=0,...,N — 1 admit unique solutions, with drifts of regularity specified in Assumption[A.1] see
(Léonard, 2014al Proposition 2.5) for sufficient conditions. We also work under Assumption [D.1] so
that the drift V¢* exists and is unique by Proposition

Given the interpolation (7;);c[0,7], we define the constraint sets

_> .
MY (7)) = {a euN . PPV —q attimes t; =1 = o,...,N}, (51)
as well as

_>
M= (1) = {a eU: ProvVinm™e— o forall te [O,T]}. (52a)
In (51, the set " is given by
uv = {a € C([0, TIxRERY - a e O, LT} « RYRY), foralli =0,...,N — 1,
3L > 0 such that ||a(x) — at(y)|| < L||z — y||, forall ¢t € [0,T], =,y € Rd},
and we recall that I/ has been defined in Assumption
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Algorithm 2 Controlled Monte Carlo Diffusions - Training

Require: 7o, 71, 7;, 0, K step-sizes Aty, network f¢
Jor i in epochs do
In Wr, Yr ~ Algorithm mﬂ‘o, 7, T 0, { Aty e £2)
Gradient descent step V4 — In Wr

return f*

By the construction in Proposition the drift V(™) can be characterised by

T

VoM € argmin By, 2.0 <o [; / ||at(Y)||2dt] (54a)
a€MN () 0

— argmin D[{]J(ﬁwo,v1n7r+a‘ﬁ>7r0,Vln7r)’ (54b)

aeMN ()

where the second line follows from Girsanov’s theorem, see the proof of Proposition

We now claim that the CMCD drift V¢*, by definition the minimiser in , can be characterised in
a similar way by

T
Vo' € argmin Ey 2 cu [ / |at<Y>|2dt] 550
a€EM> () 0
%
— argmin Dy (B Y nm+e ProVinm, (55b)
aE Mo ()

%
Indeed, the constraint P 1%V ™™ — 7, for all ¢ € [0, 7] implies that a satisfies the Fokker-Planck

equation 9y + V - (mya¢) = 0. By the Helmholtz decomposition (Figalli & Glaudo, 2021}, Section
2.5.4), minimisers of a; — f afdwt are of gradient form, thus l) holds.

Comparing (54) and (55a)), it is plausible to infer the convergence V¢(¥) — V¢*, as the marginal
constraints at the discrete time points 0,1/7,2/T, ..., T become dense and approach the continuous-
time constraint in (52).

To make this more precise, we note that since M (1) C MY () for all N € N, we have that

— — - . =
DKL<]P)7T0,VIHT\'+V¢(N>|PWQ,VIH#) < DKL(PWO,V1117T+V¢ Pno,vmn), (56)

%
for all N € N. Since Dxp,(-| P ™V 187™) has weakly compact sublevel sets (Dupuis & Ellis, 2011}

(N
Lemma 1.4.3), we can extract a subsequence [P ™0V I 7+VE*" that converges weakly towards a

path measure P € P(C(]0, T]; R)). To show that indeed P = Fro.VInmtVe" it is sufficient to note
that by the constraints in those measures necessarily have the same finite-dimensional marginals,
and to combine this observation with the continuity statement of Theorem 2.7.3 in [Billingsley
(2013)), as well as the uniqueness from Proposition@} The convergence of the drifts in the sense
of L2([0,T] x R%; R%) now follows from the lower semicontinuity of Dx;, in combination with
Girsanov’s theorem.

D.5 DISCRETISATION AND OBJECTIVE

In the setting of CMCD with KL divergence we can use the EM approximations to the RND presented
in Proposition [E.T|to express the objective as:

£CMCD(¢)%E lnﬂ-O(YVO)K_1 N(Kk+1 |Yik + (v lnﬂ'tk +Vin d)f/k)(Y:‘/k)Atkv ZUZAtk) —|
D #(vr) LLg

EION Y, Y+ (Vinm,, —V Iy, ) (Y, ) Aty, 20281

(57
where the expectation is taken wrt to the EM approximation of the SDE in (2I)), that is:
)ftk+1 ~ N(Yik + (v In Tty + Vin (btk)(}/;fk)Atkv 202Atk)- (58)
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Algorithm 3 Forward transition Fy, (Zy, ., ,, Y3, .12, Yz,)

Require: Z,,,Y,,, step-size Aty
Re-sample momentum Y}, ~ N (Y, (1 — 0 Aty) + Véy, (i, Zy, ) Aty, 2041
Update Y =Y/ + 2V inm, (Zy,)
Update Ztk+1 = Zy, + At Y]
Update Yy, ,, =Y,/ + 2&Vinm, (Zy, )
return (Z;, ,Y;, )

Leapfrog step
¢ ( Ztk ) Y:flk )

Algorithm 4 Backward transition By, (Zy,, Y3, |Zy,, . Yi,,1)

Require: Z; .Y, ., step-size Aty
Update Y, =Y;,,, — 8V inm, (Z,,)
Update Z;, = Z;, ., — At Y]

Update Y, =Y, — 2V, (Z,, )
Re-sample momentum Yy, ~ N (Y}, (1 — 0Aty) — Vo, (Y, Zy, ) Aty, 20At,1)
return (Z,,,Y;,)

Inverse leapfrog
(I)il (Ztk+1 ) }ftk+1)

D.6 UNDERDAMPED LANGEVIN DYNAMICS

In this section, we motivate the underdamped generalisation of CMCD which is used across our
experiments. This parameterisation is inspired by the underlying theory for the overdamped approach,
and we leave a rigorous extension of those foundations for future work. However, we have found this
heuristic parameterisation to perform very well empirically.

Following |Geftner & Domke|(2023) we parametrise as:
Yo, Zy ~ N(0,1) @,
dZ; =Y,dt,
_>
AY; = (0?VInm(Z,)— 0*Y; +Vou(Ye, Zy)) dt + ovV2 d W, (59)
and it’s time reversal as:
Yr, Zr ~ N(0,I) @77,
dZ; =Y,dt,
%
AY; = (=0*VInm(Z)+ 0°Y; +Vée (Y, Zy)) dt + ov2 d W (60)

D.6.1 TIME DISCRTEISATION AND OBJECTIVE

To discretise the above processes we follow the exact same discretisation scheme carried out in
Geffner & Domke| (2023)), however in this case we have to adapt the forward discretisation scheme
to include the non-linear drift when carrying out the momentum re-sample step, specific details for
this scheme can be found in Algorithms [3]and[d] This discretisation in turn allows us to compute the
discrete RND between these two processes which we require for Framework [’}

Now via Propostion 1 in (Geffner & Domkel 2023) it follows that

K—-1
WO()/O;ZU) Ftk(zthrl’Y;kJrl‘Ztk’Kk)
7TT(YVTaZT) Btk (Ztk’},tk|ztk+l’yvtk+1)

_ 7o(Yo, Zo) H N Y/ |Y;,. (1 aAtk)+V¢tk(Y}k,Ztk)Atk,20AtkI)
YT7ZT N Kk |Y; (1 *O’Atk) — (,25 (YI Ztk)Atk,QO'AtkI)

tr

(61)

then we can use the above discrete time RND to approximate the KL divergence between SDEs (59)
and yielding our objective for the under dampened setting:
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0(Yo, Zo) H Y/ Y1, (1 — 0Aty) + Vo (Ys,, Zi, ) Aty, 20 At 1)
YT,ZT N }ftk|Y/ (1 —UAtk) Vo (n;,Ztk)Atk720Atk1)
(62)

L " OAE [In

Where the expectation is taken with respect to the discrete-time process in Algorithm

E PROOFS

E.l1 PROOF OF PROPOSITION [2.2] (FORWARD-BACKWARD RADON-NIKODYM DERIVATIVES)
Proof. We begin with the forward Radon-Nikodym derivative
_>
dP e d T - r
(S50 ) )= () 0+ & [ - Tk e [0 -a) (v
dpwb dv 0 0
(63)

following from Girsanov’s theorem (see, for instance, Niisken & Richter| (2021, Lemma A.1) and
substitute cu = a — b). To compute the backward Radon-Nikodym derivative, we temporarily
introduce the time-reversal operator R, acting as (RY ) := Yr_; on pathﬂ and as (Ra):(y) ==
ap—.(y) on vector fields. We then observe that

AP uRa AP e
1 Y)=1 Y
(2225 () o,
for instance by comparing the discrete-time processes in and (9b). Equivalently,
%
e AP
Y)=h| —=— Y
n(d l/,b)( ) n(d]P)V,Rb>(R )7
since R? is the identity. Building on , the backward Radon-Nikodym derivative therefore reads
AP e d T >
’ (?ﬁ) )=t (L) RV + & [ (Ra) - ROORY:) - TRY )
v, 0

+a57 | ((RB)F = (Ra)}) (RY),)dt
0

:m(j‘y‘) (YT)+;2/OT(at—bt)( 2 - dY}—i-Qz/OT(bf—af)(Yt)dt,
©4)

where the integrals have been transformed using the substitution ¢ — 1" — ¢. The result in now
follows by writing

= = -
d P e d P ma dﬁFTW
ln< )(Y)zln( )(Y)—Hn( >(Y),
dPpvb d ;Fg,’ﬁ dpvb
using the assumption Pron’ = FFT’f, and inserting as well as . O

E.1.1 DISCRETISATION AND CONNECTION TO DNFS (DIFFUSION NORMALISING FLOWS)

In this section we derive the main discretisation formula used in our implementations for the forward-
backwards Radon-Nikodym derivative (RND).

" Although pathwise definitions should be treated with care (because Itd integrals are defined only up to a set
of measure zero), the arguments can be made rigorous using the machinery referred to in Appendix@
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Proposition E.1. Letting 'y = I'y = Leb and v+ = 0, we have that the RND in (14 M) is given by

-

dP e r

ln<d b)(Y)—lnmm—lnv(YTH;z/ a(¥;) dY; - /||at<Yt>||2dt
v, 0

T - T N
- %/0 b(Yy)- dY; + #/0 |[b¢(Y3)]|]? dt, P #%-almost surely,
and admits the following discrete-time approximation up to constant terms in a; and by (following
Remark[3),

dBne
In m (Y) =—In V(YT) +Zom ‘ |}/tz_Y;fz+1+ bta‘,+1(ni+1 )(ti-i-l - ti+1) | ‘2—|—COHSt,

K-1

when using the Euler-Maruyama discretisation:

Yi, =Y, +a,(V2,) (i — )+ (tig1 — ti)oé, §~N(,1).

Proof. The first part follows by direct computation.

From here on, we will use the notation f;, = f;,(Y;,) for brevity. Following Remark we have that

n (%) (V) ~lnw(Yy) — Inv(Yr)

=

-1 K-1

+ % at; - (Ki+1 - 'i ﬁ Z ||atlH liv1 — ti)
=0 =0
K-1 K-1
- % b tit1 (}ft7+1 - + # Z ||bt1+1||| H—l - ti)'
i=0 1=0
Adding and subtracting ||Y;,,, — Y3,[|?/(0%(ti+1 — t;)) allows us to complete the square in each
sum, resulting in:
K—1
dpme 9
In (d VJ)) (Y) = Inpu(Yo) — Inv(¥r) — ; 3oty | Yoo — Yo — e, (tigr — 1)
K—1
+ Z mHY; - Kz+1 + bti+1 (ti+1 - ti)”z' (67)
i=0

Now notice that under the Euler-Maruyama discretisation ||Y;,,, — Y;, — a¢, (tip1 — 4[> =
(tig1 — ti)o?||€]|* where € ~ N(0, I) does not depend on a; or by; in particular when using D,

for the divergence we have that EP o | Yi,, — Y, —ag, (tiv1 — 6)]|* = 0 and thus:
dBna =
In APt (Y) B8 IHM(YE)) —In V(YT) + Z W(t.% i Ki+1 + btz‘+1(ti+1 - ti)||2'
’ i=0
(68)
O

Notice that in expectation (for computing Dyy,), equation matches equation (15) in [Zhang
& Chen| (2021) and thus provides a theoretical backing to the objective used in [Zhang & Chen
(2021)). Resolving the term Eﬁ%i& Vi, — Yi, —ag, (tigr — t;)||? analytically may offer a variance
reduction similar to the analytic calculations in |Sohl-Dickstein et al.| (2015, Equation 14) and the
Rao-Blackwelizations of Dy, in{Ho et al.|(2020).

Remark 10. The time discretised RND in equation (67) can be expressed as the
ratio of the transition densities corresponding to two discrete-time Markov chains
1(Y0)q* (y1:x190) /2" (Yo -1 |y )V (y i) with yox ~ q"(Yuk|yo)u(yo). As a result con-
sidering v(x) = D(2)/Z and the IS estimator Z = p(yo.x—1|yx )P (yK)/ugyo)qa(ylzK\yo) it
follows that Eq“’(y1;K|yo)u(yo) [hl Z] is an ELBO of Z (e.g. Eq @ (y1. 1 |yo) (yo) [hl Z] <InZ).
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Whilst superficially simple, Remark [T0| guarantees that normalizing constant estimators arising from
our discretisation do not overestimate the true normalizing constant. This result is beneficial in
practice as it allows us to compare estimators possessing this property by selecting the one with
the largest value. As highlighted in [Vargas et al.| (2023a) many SDE discretisations can result in
estimators that do not yield an ELBO: for example, the estimators used in Berner et al.| (2022) can
result in overestimating the normalising constant. Note similar remarks have been established in the
context of free energy computation and the Jarzynski equality see |Stoltz et al.| (2010, Remark 4.5).

E.2 PROOF OF PROPOSITION [3.3] (CONTROLLED CROOKS’ FLUCTUATION THEOREM AND THE
JARZINKY EQUALITY)

Proof. Following the computations in Appendix [D.T]and using the formulae (29), we compute

dﬁ)p,ojv Inm4+Ve¢
In
dﬁu,—azv In7m+V¢

) (Y) = Inp(Yo) — Inv(Yr)

T T T
+/ Vinm(Y:) odY; — 0_—12/ Vi (Yz) ~V1n7rt(Y})dt—/ AP(Y:) dt.
0 0 0
Then via Itd’s lemma applied to the unnormalised annealed log target In 77; = In7; — In Z; we have

T T T
lnfrT(YT)—lnfro(Yb)—/ atlnfrt(Y;)dt:/ vmm(Yt)odYt:/ Vinm(Y;) o dY;,
0 0 0

thus we arrive at

AFmo?Vinm+ve
In
dFV,*O‘QV Inm+Ve¢

) (V) =Inp(Yo) —lnv(Yr) + Inar(Yr) — In7o(Yo)

T T T
—/ atlnfrt(n)dt—%/ wtm»wnm(mdt—/ Aéy(Yy)dt.,
0 0 0

for arbitrary initial and final densities i and . Crooks’ generalised fluctuation theorem (Crooks,
1999) now follows from taking ¢ = 0, and the controlled version in Proposition [3.3|follows from
u = mo and v = 7. Finally notice that:

dﬁu,olenﬂ -1
1 = E@_P?;L,azvlnw 2
d Eu,—o Vinn

T
=Ep,c291mn [exp <— In w(Yo) + nv(Yr) — Inap(Yr) 4+ In7p(Yo) —|—/ O In 74 (Yy) dt)} ,
0

which implies the Jarzynski equality when considering the boundaries . = mg and v = 77, resulting

in:
T
Ergo2vinn |€XDP / Oy Inw (Yy)dt || = ¢ (InZo~In2r)
0

We want to highlight that in (Vaikuntanathan & Jarzynski, 2008, Equations 10-14) ; we can see a
similar formulation to our proposed generalised Crooks’ fluctuation theorem, that said |Vaikuntanathan
& Jarzynski| (2008) seems to pose this as a conjecture providing no rigorous proof. Furthermore,
unlike our work, they do not formulate this result through SDEs, which we believe we are the first
to do. In short, our work and concurrently [Zhong et al.| (2023) are the first to provide a rigorous
treatment in establishing the escorted version of Crooks’ fluctuation theorem.

O

E.3 PROOF OF PROPOSITION[3. It} EM <= IPF

In applications, IPF is faced with the following challenges:

30



Published as a conference paper at ICLR 2024

1. The sequential nature of IPF, coupled with the need for each iteration to undergo compre-
hensive training as outlined in Section [C.3] results in significant computational demands.

2. The reference distribution r(, z) (or the reference vector field f;) enters the iterations in
(T8) only through the initialisation. As a consequence, numerical errors accumulate, and
it is often observed that the Schrodinger prior is ‘forgotten’ as IPF proceeds (Vargas et al.}
2021a; |Fernandes et al., 20215 |Shi et al., 2023)).

Thus to address these challenges this section will focus on establishing the connection between EM
and IPF which in turn will provide us with a family of algorithms that circumvent the sequential
nature of IPF, further bridging variational inference and entropic optimal transport.

Proof. The proof proceeds by induction.
To begin with, the update formula in (I8a)) implies that
7 (@, 2) = argmin { Dier ((z, ) |r(®, 2))  7ma(@) = ()}
w(x,z

recalling the initialisation 7 (x, z) = r(x, z). To take account of the marginal constraint, we may
write 7(x, z) = p(x)m(z|x) and vary over the conditionals 7(z|x). By the chain rule for Dkp,, we
see that

Dy (u()m(z[2)|[r(2, 2)) = Dxu(p(@)||r(@)) + Benp@) [Drr (r(2]2)[[r(2]2))],  (70)

which is minimised at (z|z) = r(z|x). From this, it follows that 7' (z, 2) = p(z)r(z|x) for the
first IPF iterate. By assumption, the EM iteration is initialised in such a way that ¢®° (z|x) = r(z|x),
so that indeed ! (x, z) = ¢%° (z|z)u(x).
The induction step is split (depending on whether n is odd or even):
1.) First assume that the first line of holds for a fixed odd n > 1. Our aim is to show that this
implies that

" (x, z) = pPervre (x)2)v(2), (71)
that is, the second line of (20) with n replaced by n + 1. From (I8b), we see that

7" (x, z) = arg min { Dk, (7(x, 2)||7"(x, 2)) : 7.(2) = v(2)}.
(x,z)

Again, we enforce the marginal constraint by setting 7w (x, z) = m(z|x)v(z) and proceed as in
to obtain 7" (x, 2) = 7" (x|z)v(z). The statement in (71)) is therefore equivalent to 7" (z|z) =
p?+1/2 (x| 2). To show this, we observe from the EM-scheme in that

Ont1)/2 = argemin Lpur (dn—1)/2,0).
In combination with the second line of (20) and the definition of £ (¢, ) in (5)), we obtain
Ont1y/2 = argemin Dy, (7" (x, 2)| |p9 (x|z)v(z)) = argemin Ezmrn(2) [DKL(W"(w\z) | \pe (:c|z))]
where the second equality follows from the chain rule for Dy, as in (70). Since by assumption the

parameterisation of p (z|z) is flexible, we indeed conclude that 7" (x[z) = pP+1/2(z|2).

2.) Assume now that the second line of holds for a fixed even n > 2. We need to show that the
first line holds with n replaced by n + 1, that is,

(@, 2) = ¢*n2 (2] p().
Using similar arguments as before, we see that 7"+ (z, 2) = 7" (x|z)u(x), so that it is left to show
that 7" (z|z) = ¢®»/2(z|z). Along the same lines as in 1.), we obtain

Pnj2 = arg;nin LDy, (¢, 0n)2) = arg;nin D (q® (z|z) ()| 7" (x, 2))
= arg;ninEENH(m) [q¢(z|w)|\7r"(z|a:)] .

Again, this allows us to conclude, since the parameterisation in ¢®(z|x) is assumed to be flexible
enough to allow for g%/ (z|x) = 7" (x|z).

The proof for the path space IPF scheme is verbatim the same after adjusting the notation. For
completeness, we consider a drift-wise version below. O

31



Published as a conference paper at ICLR 2024

Remark 11 (Extension to f-divergences). The proof does not make use of specific properties of
Dk, other than that it satisfies the chain rule. As a consequence, the statement of Proposition
straightforwardly extends to other divergences with this property, in particular to f-divergences, see
Proposition 6 in (Baudoin, 2002)).

E.4 DRIFT BASED EM

As remarked in the previous subsection, the proof of the equivalence between IPF and EM in path
space follows the exact same lines, replacing the chain rule of Dky, with the (slightly more general)
disintegration theorem (Léonard} 2014b). In this section, we provide a direct extension to the control
setting, yielding yet another IPF-type algorithm and motivating certain design choices for the family
of methods we study.

Corollary E.2 (Path space EM). For the initialisation ¢ = 0 the alternating scheme
= ,
0n+1 = arg min DKL( P [V, , $V7f+U2V0)’
0

i1 = axgmin Dy (Br/+o°96 Prf+o"Voup) (73)

agrees with the path space IPF iterations in (Bernton et al.| 2019 |Vargas et al.| 2021a} |De Bortoli
et al.| 2021).

%
Proof. For brevity let Lpg(¢, 0) := Dgp (B +o°V9, Pprsro’ve ). Additionally, we parameterise
the forwards and backwards SDEs with respective path distributions ?“’f +o°V, %”’f +9°V0 a5:

%
dY;= f(Y3)dt + 0*Vu(Yy) dt + o d Wy, Yo~p,
dY; = fi(Y)) dt + 0?VO,(Y)) dt + 0 AWy, Y~ 1.

The proof will proceed quite similarly, so instead we will consider just the inductive step for the odd
half bridge:

0, = argmin L (¢pp_1,0).
0

We can show via the Dk, chain rule and the disintegration theorem (Léonard, 2014b)) that the above

is minimised when 6 satisfies P/ +o°V0 — Puf+o’Véu — 9%, — which corresponds to
dev n—

Vb, = 0?V¢,_1—0>VIn pf’f+g Vén— following Observation 1 in|Vargas et al.|(2021a). Similarly

as per Proposition [3.T] the results will follow for the even half bridges.

O

EM initialisation: The above corollary provides us with convergence guarantees when performing

coordinate descent on Dy, (P #-/+o° Ve P r./+0V0) qubiect to initialising ¢ = 0. n practice, this
indicates that the way of initialising ¢ has a major impact on which bridge we converge to.

Thus as a rule of thumb we propose initialising ¢g = 0 such that we initialise at the Schrédinger prior:
then one may carry out joint updates as an alternate heuristic, we call this approach DNF (EM Init),
as it is effectively a clever initialisation of DNF inspired by the relationship between IPF and EM.

E.5 HIB-REGULARIZERS

As per Section IPF resolves the nonquniqueness in minimising £p (¢, #) by performing the
coordinate-wise updates (I9) starting from an initialisation informed by the Schrodinger prior. On
the basis of this observation, the joint updates (¢n+1,0n+1) < (¢n,0n) — RV 4.0 L (6, 0) suggest
themselves, in the spirit of VAEs (Kingma et al.,|2019) and as already proposed in this setting by
Neal & Hinton| (1998). However, as is clear from the introduction, the limit lim,, —, oo (¢n, 6,,), can
merely be expected to respect the marginals in (6], and no optimality in the sense of is expected.
As aremedy, we present the following result:
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Proposition E.3. For \ > 0, a divergence D on path space, and ¢, € C*2([0,T] x R%;R), let
L5, §) := D(BHI 0"V Pri+a’Vo) 4 \Reg(g), (74)

where Reg(¢) = 0 if and only if the HIB-equation 0y + f - V¢ + %A(b + %2 |Vo|? = 0 holds.
Then Lsen: (¢, 0) = 0 implies that the drift a; := 0>V ¢y solves .

The proof rests on an optimal control reformulation of the Schrédinger problem (see Appendix [E),
identifying the HJB-equation as the missing link that renders joint minimisation of theoretically
sound for solving (I7). The loss in has two important benefits compared to standard IPF. First, it
circumvents the need for the sequential updates used in IPF, thereby simplifying and speeding up
the optimisation procedure. Second, it enforces the Schrodinger prior drift f directly, rather than
recursively via eq. (I8a)), (I8D). This prevents the prior from being forgotten, as is usually the case in
regular IPF. In Appendix we detail possible constructions of Reg(¢), discuss relationships to
previous work, and evaluate the performance of the suggested approach in numerical experiments.

This result can be found in |Chen et al.| (2021} Proposition 5.1), for instance, but since it is relevant to
the connections pointed out in Remark [13|below, we present an independent proof:

Proposition E.4 (Mean-field game formulation). Assume that ¢ € C*2([0, T|xR%R) satisfies the
conditions:

1. The forward SDE
%
AY; = (i) dt + 0° Ve (Vi) dt + o dWy, Yorp (75)

admits a unique strong solution on [0,T), satisfying moreover the terminal constraint
YT ~ V.

2. The Hamilton-Jacobi-Bellmann (HJB) equation
0‘2 2 9
8t¢+f~V¢+?A¢+ %IVels =0 (76)
holds for all (t,z) € [0,T] x R%.
Then a = o>V ¢ provides the unique solution to the dynamical Schrodinger problem as posed in .

Proof. We denote the path measures associated to the SDE

by P and the SDE by P?, respectively. According to Girsanov’s theorem, the Radon-Nikodym
derivative satisfies

dp? T . [T
G =P o—/ ngt(Yt)-th—%/ V|2 (Y;)dt |, (78)
0 0

provided that the marginals agree at initial time, Py = ]P’g. Along solutions of , we have by Itd’s
formula

T T ) T T
o0 (Yr)—do(Yo) = /0 Drbe (V) dt + /0 (e Vo) (Y dt + 2 /OA@(Yt)dt o Voux)-aw,

> [T ) T dP®
——5 [ Wopmae [ Vo awi-n (). @
0 0
where we have used the HIB-equation in the second line. Combining this with (78), we see that
dp?
ap ¥) = exp (=¢o(¥o)) exp (67 (Y1) - (80)

The claim now follows, since the unique solution to the Schrodinger problem is characterised by
the product-form expression in (80] see [Léonard (2014al Section 2), together with the marginal

constraints ]P’S) = p and }P’i = v, which are satisfied by assumption. 0
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Remark 12 (Summarised relationship to previous work). For A = 0, coordinate-wise updates of
Lsenr (¢, 0) recover the IPF updates from De Bortoli et al.| (2021)); [Vargas et al.[(2021a) according
to Corollary @ Note that Lg.y, is an unconstrained objective, in contrast to ; previous works
(Koshizuka & Sato}, 2023; Zhang & Katsoulakis, [2023) have suggested incorporating the marginal
constraints softly by adding penalising terms to the running cost in (I7). Those approaches require a
limiting argument (from an algorithmic standpoint, adaptive tuning of a weight parameter) to recover
the solution to (I7). In contrast, the conclusion of Proposition [E.3|holds for arbitrary A > 0. [Shi et al.
(2023)); |Peluchetti| (2023) suggest an algorithm involving reciprocal projections onto the reciprocal
class associated to f;. From|Clark](1991)); Thieullen|(2002)); [Reelly| (2013)), the HIB-equation (76)) is a
local characteristic (Reg(¢) = 0 forces to be in the reciprocal class); hence Reg(¢) in 1ays
a similar role as the reciprocal projection (Shi et al., 2023, Definition 3), see Remark Liu et al.
(a) suggest an iterative IPF-like scheme involving a temporal difference term (Sutton & Barto} 2018,
Chapter 6). As in|Niisken & Richter| (2023)), this is a an HIB-regulariser in the sense of Proposition
see Remark Finally, |Albergo et al.| (2023, Theorem 5.3) and |Gushchin et al.|(2022) develop
saddle-point objectives for (7).

Remark 13 (Connection to reciprocal classes (Shi et al., 2023} |Peluchetti, | 2023)) and TD learning
(Ciu et al}[a)). The calculation in equation (79) makes the relationship between the HIB equation
and reciprocal classes manifest (since reciprocal classes can essentially be defined through the
relationship , see Léonard et al.[(2014); Reelly| (2013))). Moreover, equation showcases the
relationship between TD learning (Sutton & Barto, |2018} Chapter 6) as suggested in|Liu et al.|(a) and
HIJB regularisation. Indeed,

R T T
Regpgpp () = Var <¢T(YT) - ¢o(Yo) + %/0 [Voe|*(Ye) dt — 0/0 Vou(Y) - dWy |,

(81)
where the variance is taken with respect to the path measure induced by (77)), is a valid HIB-regulariser
in the sense of Proposition The equivalence between Regpgpg(#) = 0 and the HIB equation
follows from the theory of backward stochastic differential equations (BSDES see, for example,
the proof of Proposition 3.4 in Niisken & Richter (2023)) and the discussion in Niisken & Richter
(2021}, Section 3.2).

In the following, we present an analogue of Proposition [E.4]involving the backward drift (Chen et al.
2019):

Proposition E.5. Assume that § € C*2(]0,T] x R%; R) satisfies the following two conditions:
1. The backward SDE
aY; = f,(Y))dt + 0?Vo,(Y)) dt + o AW, Yy ~uv (82)

admits a unique strong solution on [0, T, satisfying moreover the initial constraint Yy ~ pu.

2. The Hamilton-Jacobi-Bellmann (HJB) equation
0'2 2 2
at9+f~v9—?Ae+%\ve| -V-f=0 (33)

holds for all (t,x) € [0, T] x R%.

Assuming furthermore that the solution to (82) admits a smooth positive density p, we have that
a; = VO, + 02V In p; provides the unique solution to the Schrodinger problem as posed in .

Remark 14. As opposed to|Chen et al. (2016| equation (41)), the HIB-equation (83) does not involve
the time reversal of the Schrodinger prior; the form of the HIB equations is not uniquely determined.
On the other hand, contains the divergence term V - f, which discourages us from enforcing this
constraint in the same way as . An akin result can be found in|Liu et al.| (a) stated in terms of
BSDE:s.

12 not to be confused with reverse-time SDEs as in li
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Proof of Corollary Using the forward-backward Radon-Nikodym derivative in (I4)), we compute

%
dpm/ du dv T T —
8 <d u,f+a2v¢>(Y)_ln (dLeb>_ln (dLeb> +"/0 fu¥e) - AW, — /Oft(Yt). dw,

T — 5 T
—a/ VoY) - th+%/ VO, |*(Y;) dt
0 0

- du dv r r — .2 9

Here we have chosen 7 = <7 =0, and I'g = I'r = Leb. The initial measure for the Schrodinger
prior is u, but the argument is unaffected by this choice (as the solution is independent of this). We
now use the (backward) It6 formula along the Schrédinger prior,

T T T T
0u(Yr)~00(%5) = [ 0¥y et [ VoUW TWer [ 90,3 fivi) - [ adu(vi) .

Using the HIB-equation (83)), we see that

_)
dPmf d dv
" <d ufﬂ;?v@) (¥)=In <dL’Zb) —In (dLeb) = 6:(Yr) +60(Yo), 4

and we can conclude as in the proof of Proposition O

F CMCD EXPERIMENTS
In this section, we will cover further details pertaining to our experimental setup.

F.1 ELBO EXPERIMENTS AND COMPARISON TO |GEFFNER & DOMKE]|(2023)

We compare our underdamped and overdamped CMCD variants against 5 datasets from |Geffner &
Domkel (2023), which we describe in further detail below.

* log_sonar (d = 61) and 1og_ionosphere (d = 35) are Bayesian logistic regression
models: z ~ N(0,02 1), y; ~ Bernoulli(sigmoid(x " u;)) with posteriors conditioned on
the sonar and ionosphere datasets respectively.

* brownian (d = 32) corresponds to the time discretisation of a Brownian motion:
Qinn ~ LogNormal(0, 2),
Qobs ~ LogNormal(0, 2),
x1 ~ N(0, inn),
z; ~ N(zi—1, Qipn), 1= 2,...20,
yi ~ N (2, aops), ©=1,...30.
inference is performed over the variables qinn, Qobs and {z;}22, given the observations
{yi 1121 U {yz}fgzo

* lorenz (d = 90) is the discretisation of a highly stiff 3-dimensional SDE that models
atmospheric convection:

z1 ~N(loc =0, scale =1

)
y1 ~N(loc =0, scale =1)
z1 ~N(loc =0, scale =1)

z; ~N(loc =10(y;—1 — x;—1), scale = Qinn) 1=2,...,30
yi ~N(loc =x;_1(28—2;1) —yi_1), scale = ajy) i=2,...,30
zi ~N ( loc = z;_1yi_1 — %zi,l, scale = ainn) 1=2,...,30,
0o; ~N(loc =uz;, scale =1) 1=2,...,30

where aip, = 0.1 (determined by the discretization step-size used for the original SDE).
The goal is to do inference over x;,y;, 2; fort = 1,...,30, given observed values o; for
ie{l,...,10}U{20,...,30}.
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* seeds (d = 26) is a random effect regression model trained on the seeds dataset:

7 ~ Gamma(0.01,0.01)
apg ~ N(O, 10)

ayp ~ /\/’(07 10)

as ~ N(0,10)

ai1g ~ N(O, 10)

(o)

i=1,...,21
logits,i =ag + a1T; + ay; + a12%;Y; + by
i=1,...,21
r; ~ Binomial (logits;, N;)
1=1,...,21.
The goal is to do inference over the variables 7, ag, a1, as,a12 and b; fori = 1,...,21,

given observed values for x;, y; and N;.

For all target distributions, we follow the hyperparameter setup from |Geffner & Domke| (2023)
from their code repositor for all baseline methods (ULA, MCD, UHA, and LDVI) as well as
our overdamped and underdamped variants. We first pretrain the source distribution to a mean-field
Gaussian distribution trained for 150, 000 steps with ADAM and a learning rate of 10~2. We then
train for 150000 iterations with a batch size of 5, tuning learning rate between [107°,107%,1073]
picking the best one based on mean ELBO after training. For all methods, during training the
mean-field source distribution is continued to be trained, as well as the discretisation step size and
€ = d0to. For the underdamped methods we also train the damping coefficient -y, and for methods
involving a score network, i.e. MCD, LDVI, CMCD and CMCD (UD), we train the networks which
are chosen to be fully-connected residual networks with layer sizes of [20, 20]. In order to report the
mean ELBO after training, we obtain 500 samples with 30 seeds and report an averaged value over
them.

F.2 InZ, SAMPLE QUALITY EXPERIMENTS AND COMPARISON TO (ZHANG & CHEN, (2022}
VARGAS ET AL.,[2023A)

Furthermore, we also include comparisons to a large-dimensional target distribution and two standard
distributions with known In Z replicated from |Vargas et al.|(2023a), which we summarise below.

* 1lgcp (d = 1600) is a high-dimensional Log Gaussian Cox process popular in spatial
statistics (Mgller et al.,|1998)). Usinga d = M x M = 1600 grid, we obtain the unnormalised
target density N (z; 11, K) [ [;¢ (1. 072 €XP (ziyi — aexp ().

e funnel (d = 10) is a challenging distribution given by mr(T1.10 =
N (z1;0, 0]20)/\/'(332;10; 0, exp(x1)I), with O‘ch = 9 (Neall, 2003).

* gmm (d = 2) is a two-dimensional Gaussian mixture model with three modes, given by the
following target distribution

mr () = %N <$? m : [067 0.%5]) + éN (x? [_3'5] : {067 0.%5})

(=3 ot ")

For these target distributions, we follow the hyperparameter setup from Vargas et al.|(2023a) from
their code repositoror the baseline methods of DDS and PIS, and replicate them as closely as

Bhttps://github.com/tomsons22/LDVI
“https://github.com/franciscovargas/denoising _diffusion_samplers
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Figure 2: Architecture from (Geffner & Domkel [2023) used across experiments for our CMCD drift
network. Softplus activations are used.
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possible for CMCD. Unlike the previous, we don’t pretrain the mean-field Gaussian source distribution
N(0,02,I). We select the optimal learning rate in [10~3, 104, 10~°], the optimal standard deviation
of the source distribution oy in [1,2, 3,4, 5] and the optimal « in [0.1,0.5,1,1.5,2]. Instead of
training € = Jto, we sweep over an optimal value in [1072,10~, 1]. The models are trained with a
batch size of 300 for 11000 steps, where we keep the source distribution parameters fixed, as well
as e. For evaluation, we use 30 seeds with a batch size of 2000, and report average performance
over the seeds. DDS and PIS use a 128-dimensional positional embedding, along with an additional
network for the time parameters, however MCMD uses a regular score network. In order to make
exact comparisons, we select differing network architecture sizes that result in an equivalent number
of parameters for funnel and gmm. For 1gcp, due to the high dimensionality of the dataset,
we choose a small network for CMCD. We summarise these below. For gmm and funnel, it is
possible to sample from the target distribution, and we report an OT-regularised distance Wy ) with a
regularisation y = 10~2. Similar to the mean ELBO, we draw 2000 samples from the models and
the targets, and average W2 over 30 seeds. We use the Python Optimal TransporlE] library’s default
implementation of entropy-regularised distance. Results for comparisons to DNF can be found in
Table

Table 1: Network Sizes for comparison. Note that CMCD has less parameters for the despite the
Funnel target despite the larger drift due to the PIS and DDS networks having an additional grad
network.

GMM LGCP FUNNEL
DDS [10,10] [64,64] (64, 64]
PIS [10,10] [64, 64] (64, 64]
CMCD [38,38] [64,64] [110,110]

F.3 COMPARISONS WITH THE LOG-VARIANCE LOSS - MODE COLLAPSE FAILURE MODE

Here, we report performance using the log-variance divergence-based loss (Niisken & Richter, 2021)
introduced at the end of Section[3.2]

N Y;kJrl‘lftk (v lnﬂ-tk +Vin (btk)(yvtk)Atk’QUQAtk)
N },tk |Y;fk+1 (VIH Ttpey i Vin ¢tk+1 )(Y;k+1 )Atkv 2U2Atk)
24)

LGP (¢) 2 Var |1 H

A careful reader will note this loss simply consists of replacing the expectation in the KL loss with
a variance. A major computational advantage of this loss is that the measure that the expectations
are taken with respect to can be any measure and is not restricted to the forward or backward SDEs
like in KL (Richter & Berner, |2024; |[Richter et al.,|2020; Nusken & Richter, [2021)), this allows us to
detach the samples and thus accommodating for a much more computational objective.

which we find performs quite well compared to our default loss function, especially for multimodal
target distributions. We consider the very multi-modal mixture of Gaussian target distribution from
Midgley et al.[(2022), and report the ELBO and In Z numbers in the table below. For this experiment,
we use a batch size of 2000 and train neural networks with a size [130, 130] for 150k iterations.

Bhttps://pythonot.github.io/
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Table 2: ELBO and In Z on 40-GMM

ELBO InZz Wo
log-variance LOSS ~ -1.279 + 0.096 -0.065 +£0.101  0.0143 £ 0.001
KL Loss -2.286 £0.1109 -0.244 £ 0.3309 0.0441 +£0.012

samples samples

60

20

—60 +
—60 60

Figure 3: (left) 2000 samples drawn from the CMCD algorithm trained with the default loss function,
and (right) 2000 samples drawn from the algorithm trained with the log-variance divergence-based
loss. We can see that the default loss function misses many modes in the target distribution, whereas
the log-variance loss has not missed any modes. We report final results after sweeping over A,
and learning rates for both methods, picking the one with the lowest training loss. We highlight that
concurrent work by [Richter & Berner| (2024) explores the log variance divergence in more detail and
proposes an akin general framework for diffusion-based sampling.

10
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mmm= Variance loss, A, = 0.1 === Default loss, A, = 0.1

wes= Variance loss, A, = 0.65 mmm= Default loss, A, = 0.65

Figure 4: Plots showing training loss curves for the log-variance loss and the default loss for different
values of A, . We find that a low value of A;, = 0.1 is needed in order to obtain a low training loss
for the default loss, whereas the log-variance loss is much more robust to different values of A, .
The x-axis reports an evaluation every 150 steps of training

F.4 SPECIFICATION AND TUNING: SMC, AFT, AND NF-VI

We adopted the implementationd™®| provided by the studies in|Arbel et al. (2021); Matthews et al.
(2022) and initialized them with default hyperparameters before fine-tuning.

16https ://github.com/google—-deepmind/annealed_flow_transport
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Sequential Monte Carlo (SMC). For SMC, we utilized 2000 particles sampled from a zero-mean
unit Gaussian distribution, implementing re-sampling if the effective sample size (ESS) fell below
0.3. We employed Hamiltonian Monte-Carlo (HMC) for particle mutation, executing one Markov
Chain Monte Carlo (MCMC) step after each annealing step. The number of leapfrog steps was fixed
at 10, and an extensive grid search over different step sizes was conducted, consistent with |Arbel
et al.[(2021). This search spanned four different step sizes, contingent on the temperature, resulting
in a grid search over 256 parameters. The finalized values are presented in Table[3] For SMC, K is
defined by the number of temperatures.

Furthermore, we report the results for SMC in Table [3] for the tuned hyperparameters used for
each target. Please note that we were able to obtain similar In Z values as in [Vargas et al.| (2023a)
suggesting SMC was well-tuned. Finally, for each result, we report the mean and standard deviations
across 30 different seeds, results can be seen in Table[3]

Annealed Flow Transport Monte Carlo (AFT). We maintained a similar setup to SMC, with a
few adjustments: using 500 particles for training and 2000 for evaluation to accommodate the added
complexity from the normalizing flows. We also decreased the number of temperatures and increased
the number of MCMC steps to mitigate memory requirements from the flows. K is defined as the
number of temperatures x MCMC steps, with the latter fixed at 4, resulting in a maximum of 64 flows
trained simultaneously. Inverse autoregressive flows (IAFs) were employed in all experiments except
for Igcp, using a neural network with one hidden layer whose dimension matches the problem’s
dimensionality. For Igcp, a diagonal affine flow was used due to memory constraints arising from the
high dimensionality. AFT flows were trained for 300 iterations until convergence.

Variational Inference with Normalizing Flows (VI-NF). We utilized the same flows as for AFT.
In this case, K denotes the number of flows to stack. The flows were trained over a total of 2000
iterations with a batch size of 500. For some targets

Table 3: Tuned MCMC Step Sizes.

GMM LGCP LORENZ BROWNIAN LOG_SONAR LOG_IONOSPHERE SEEDS FUNNEL
At [0.5,0.5,0.5,0.3] [0.3,0.3,0.2,0.2] [0.01,0.01,0.008,0.01] [0.2,0.2,0.05,0.05] [0.2,0.05,0.2,0.2] [0.1,0.2,0.2,0.2] [0.2,0.1,0.05,0.01]  [0.05,0.2,0.2,0.05]

Table 4: SMC Results. ELBO and In Z values for a different number of steps K and experiments.

InZz GMM LGCP LORENZ BROWNIAN LOG_SONAR LOG_IONOSPHERE SEEDS FUNNEL
K=38 —0.536 £0.042 —364.074 £ 7.797 —87502.352 £ 4004.495 —63.32£8.016 —178.589£2.784 —204.594 £3.049 —108.676+1.221 —1.013%0.116
K =16 —0.255£0.034  —135.207 £4.665 —42148.287 4+-1047.478 —28.7144+3.71  —137.691 £1.656 —149.107+1.088  —88.068 4 0.467 —0.65+0.1
—0.119 £ 0.017 86.106 £ 5.989 —19288.267 + 834.52 —12.234+2.212  —120.557 £0.613 —127.964 £ 0.394 —79.89 £ 0.273 —0.408 +0.17
K =64 —0.059 £0.015  269.566 & 7.832 —8894.525 + 119.723 —4.76 £ 1.042 —113.835 £0.167 —118.812£0.192 —76.275+£0.189  —0.359 & 0.087
K =128 —0.029 & 0.009 390.33 &+ 5.427 —5419.678 £ 90.362 —1.6754+0.442  —110.901 £0.094 —114.827+0.307 —74.7744+0.097  —0.255 £ 0.108
K =256 —0.013+£0.006 477.162 4 4.998 —3745.218 £ 68.342 —0.131 £ 0.22 —109.562 £0.072 —113.123 £0.172  —74.049£0.088  —0.211 +0.074
ELBO
0.002 + 0.066 —56122.917 £ 5402.094  —10.147 £ 3.427 —117.499 £4.049 —123.772£3.689  —75.183 £ 1.447  —0.417 £ 0.236
—0.003 £ 0.037 —27397.2 4 1987.523 —3.9244+2.114  —110.707 £1.823 —113.476 = 1.361  —73.5244+0.543  —0.322+0.184
0.003 = 0.018 4 —12110.983 4= 1204.2 —0.426 +1.415  —108.574 £0.547 —112.048 = 0.519 —73.459 £ 0.29 —0.215 £ 0.222
0.001 + 0.015 332.187 £ 9.025 —5360.819 =+ 306.407 0.884 £0.778 —108.424 £0.154 —111.715+£0.184  — 540214  —0.267 +0.101
Y 0.001 % 0.009 .838 4 6.441 —3624.167 + 168.119 1.008 £ 0.27 —108.395 £ 0.087 —111.603 £0.298 — 6 4 0.095 —0.24+0.124
K =256 0.002 + 0.006 453.395 + 4.43 —2811.161 £ 106.68 1.142 £0.125 —108.368 £0.071  —111.611 £0.171  — 340.087  —0.181+0.081

F.5 FURTHER ABLATION WITH NF-STYLE METHODS AND AFT

We further run both flow models (AFT and NFVI) on all possible target distributions (subject to
OOM errors). Results can be found in Table[6]

F.6 WALLCLOCK TIMES FOR In Z CALCULATION

In order to calculate the average wall-clock time for In Z calculation, we calculate the time it takes to
draw 30 seeds of 2000 samples each from the methods below, and use these samples to calculate the
mean and standard deviation of In Z across 30 seeds.

F.7 TRAINING TIME COMPARISONS TO SMC

In this section, we explore a total time comparison between our approach CMCD and SMC.
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Table 5: In Z comparison. In Z values for a different number of steps K, experiments and methods.
Not all methods could be evaluated on every K /experiment combination due to numerical instabilities
or out-of-memory (OOM) problems.

Dataset | Method | K=38 K =16 K =32 K =64 K =128 K =256
funnel CMCD | -0.3037 + 0.1507 -0.223 £+ 0.1041 -0.1805 £0.0773  -0.1085 +0.1143  -0.0573 + 0.0444 -0.01928 + 0.0641
log_ionosphere | VI-DNF | -0.3768 &+ 0.2157  -0.3517 + 0.1627 -0.2919 £0.0999  -0.6941 +0.6841  -0.1947 +£0.1325  -0.2124 £ 0.0637
VI-NF -0.206+ 0.079 -0.206+ 0.082 -0.206=+ 0.087 -0.194+ 0.101 -0.182+ 0.097 -0.197+ 0.099
AFT -0.8754+ 0.543 -0.395+ 0.351 -0.348+0.192 -0.271+ 0.227 -0.235+£0.139 -0.196+ 0.111
gmm CMCD | -0.1358 +0.0839 -0.01331 £0.1292  0.0095 £+ 0.0495  0.00736 + 0.0477 -0.0004 + 0.0368  -0.0081 + 0.0520
VI-DNF | -0.3676 4+ 0.6314 -0.258 £ 0.412 -0.4983 £ 0.3878  -0.4449 + 0.5379  -0.4652 + 0.3223 -0.204 £ 0.6381
VI-NF -0.355+ 0.698 -0.455+ 0.258 -0.064+ 0.138 -0.054+0.15 -0.066+ 0.188 -0.045+0.177
AFT -0.336+ 0.372 -0.006+ 0.082 0.02+ 0.068 -0.016+ 0.042 -0.003+ 0.029 0.001+ 0.026
lgep CMCD 491.059 + 3.553 498.147 - 2.624 502.705 +2.482 506.045 £ 1.761 508.165 + 1.553 509.43 +1.242
VI-DNF | 424.733 +5.858 424.719 + 5.855 424.714 £+ 5.861 424.719 £ 5.860 424.7 £ 5.869 424.705 + 5.896
AFT 126.6514 5.764 344.145+ 23.95 191.613+ 173.873  420.259+91.43  480.126+ 33.059 491.028+ 8.057

Table 6: ELBO comparison.

ELBO values for a different number of steps K, experiments and

methods. Not all methods could be evaluated on every K/experiment combination due to numerical
instabilities or out-of-memory (OOM) problems.

Dataset | Method | K=38 K =16 K =32 K =64 K =128 K =256
seeds CMCD —74.501 £ 0.049 —74.327 + 0.065 —74.142 +0.05 —73.967 +0.038 —73.8+0.032 —73.684 +0.033
VI-NF —73.563 £ 0.013 —73.547 £ 0.012 —73.574 +£0.012 —73.58 £0.014 —73.621 £ 0.014 —73.675+0.014
AFT —147.457 £ 24.808  —116.134 £ 8.157 —99.032 + 6.321 —87.436 + 1.53 —79.847 £ 0.419 —76.364 +0.188
CRAFT —146.973 £ 1.531 —94.2 4+ 0.505 —80.985 + 0.344 —76.555+0.175 —74.979 £ 0.143 —74.225 £ 0.133
log_ionosphere | CMCD —113.211 £ 0.089 —112.643 £ 0.062 —112.643 £+ 0.062 —112.22 + 0.046 —111.98 £ 0.04 —111.925 + 0.046
VI-NF —111.903 + 0.022 —111.902 + 0.022 —111.892 + 0.017 —111.881 +0.017 OOM OOM
AFT —168.174 +21.249  —138.733 £ 8.374 —123.013 £ 3.771 —118.644 £ 0.891 —116.497 £ 0.495 —114.905 + 0.781
log_sonar CMCD —112.274 £0.124 —110.904 = 0.111 —110.459 £+ 0.106 —109.503 £ 0.075 —109.608 £ 0.066 —109.25 £ 0.052
VI-NF —109.353 £ 0.035 —109.346 £ 0.031 —109.441 £+ 0.035 —109.94 £ 0.044 —109.711 £ 0.039 OOM
AFT —203.249 £12.506  —148.357 £ 8.096 —129.772 £ 3.057 —121.653 £ 2.505 —114.911+0.331  —112.021 £ 0.182
lgep CMCD 469.475 £ 0.259 479.246 £+ 0.237 486.739 4 0.249 492.745 +0.239 497.074 £ 0.267 499.708 4 0.236
AFT 75.896 + 0.863 265.005 + 34.254 62.898 £ 200.991 340.687 + 126.853 417.916 £ 50.35 424.705 £+ 12.416
lorenz CMCD —1180.797 £ 0.184 —1180.797 £0.184 —1176.514 +0.154 —1174.309 +0.148 —1172.453 £0.153 —1170.826 £ 0.15
VI-NF —1499.102 £ 0.84 —1471.798 +0.582 —1439.648 £0.274 —1433.536 £ 0.316 OOM OOM
brownian CMCD —0.753 £ 0.075 —0.209 £ 0.059 0.153 £+ 0.045 0.376 £ 0.038 0.578 4 0.046 0.722 4 0.032
VI-NF 0.733 +£0.019 0.797 £ 0.018 0.816 £+ 0.018 OOM OOM OOM

As both methods are quite inherently different it is not immediately obvious how to carry out an
insightful comparison. In order to do so we chose the LGCP which is our most numerically intense
target and we phrase the following question:

“For how long do we have to train CMCD to outperform the best-run SMC”

For this, we look at our Figure[T] pane ¢) and we can see that at K = 8 CMCD already outperforms
SMC at K = 256 with 2000 particles. So we choose these two approaches to compare to. In Table[9)]
is a brief comparison of total time calculations, note we have included tuning time for SMC which is
akin to our training time as without tuning SMCs hyperparameters ELBOs and In Z estimations were
much worse. We can observe that the total runtime for training and sampling CMCD to reach a better
In Z value does not exceed the time required to tune SMC.

G REGULARISED IPF-TYPE EXPERIMENTS

For the purpose of completeness in this section, we empirically explore the regularised IPF-type ob-
jectives proposed in the main text. We explore a series of low-scale generative modelling experiments

Method Average Time (s) Min Time (s) Max Time (s)
CMCD (OD) 9.665 5.592 21.475
ULA 9.204 4.673 20.721
UHA 9.427 5.588 20.263
MCD 9.204 4.673 20.721

Table 7: Wallclock times for evaluation in seconds.
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Mode ULA MCD CMCD DDS /PIS
Sampling O(K - (d+ G(d))) O(K -(d+ G(d))) O(K - (d+ G(d) + N(d))) O(K - (N2 + G(d) + N1(d)))
ELBO O(K-(d+G(d) OK-(d+G(d)+N(d)) O(K-(d+G(d)+ N(d))) O(K-(N2+ G(d)+ N1(d)))

Table 8: Sampling and loss calculation complexity across SDE based methods, K represents the
number of integration steps, G(d) represents the cost of evaluating the score of the target and N (d)
for evaluating the drift/score networks both quantities are dimension dependant. PIS and DDS have
an additional grad network cost Ny which is dimension independant.

Method Train + Sample Time (min) InZ ELBO
CMCD 33.12+£0.12 491.059 4+ 3.553  469.475 + 0.2589
SMC 62.62 +0.10 477.162 £ 4.998  453.395 £ 4.4300

Table 9: Training+ Tuning + Sampling time comparisons for CMCD and SMC at comparable In Z
estimates.

where the goal is to retain generative modelling performance whilst improving the quality of the
bridge itself (i.e. solving the SBP problem better).

Across our experiments, we use Dy, and let 'y = 'y = Leb, which can be simplified to the
forward-backwards KL objective used in DNF (Zhang et al.| [2014), see Appendix [E.I.T] We use the
Adam optimiser (Kingma & Ba, 2015)) trained on 50,000 samples and batches of size 5000 following
Zhang & Chen|(2021). For the generative modelling tasks we use 30 time steps and train for 100
epochs whilst for the double well we train all experiments for 17 epochs (early stopping via the
validation set) and 60 discretisation steps. Finally note we typically compare our approach with
A > 0 to DNF (A = 0), with DNF initialised at the reference process, which we call DNF (EM Init),
see Appendix [E.4]for further details.

G.1 2D TOY TARGETS — GENERATIVE MODELLING

Here we consider the suite of standard 2D toy targets for generative modelling explored inZhang &
Chen|(2021) In contrast to Zhang & Chen|(2021)) we consider the SDE dY; = —o?Y, dt+ V2 dW,
as the Schrodinger prior across methods. We parametrise DNF and our proposed approach with
the same architectures for a fair comparison. Furthermore, we incorporate the drift of the above
Schrodinger prior into DNF via parameterising the forward drift as in (75), partly motivated by

Corollary

In order to assess the quality of the bridge we consider three different error metrics.
Firstly we estimate Dkg, between the Schrodinger prior and the learned forward process (i.e.

T — 2 2
Ey. Fue [ﬁ Jo llae = fel?(Yz) dt]). Secondly, we evaluate D (P #/+ W,F”’f*” V) to ob-
tain a proxy error between the learned and target marginals. Finally, we estimate the cross entropy
between P/ and v to assess how well the constraint at time 7 is met.

In Tablewe observe that similar values of Dk, are attained across both approaches in the tree,
sierpinski, and checkerboard datatsets whilst achieving significantly lower values of the SBP loss
across all training sets, and for tree, swirl and checkerboard validation datasets. At the same time, we
can see that the cross-entropy errors are effectively the same across both approaches. Overall we can
conclude that on the empirical measures over which we train our approach, we obtain a much better
fit for the target Schrodinger bridge, and on the validation results we can see that we generalise to 3/5
datasets in improving the bridge quality whilst preserving the marginals to a similar quality.

G.2 DOUBLE WELL — RARE EVENT

In this task we consider the double well potential explored in (Vargas et al.,|2021b; |Hartmann et al.,
2013) where the Schrodinger prior is specified via the following overdamped Langevin dynamics
dY; = —Vy,U(Y;) dt + o dW;. The potential U(y) typically models a landscape for which it is
difficult to transport y into v.
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- S s/f' N /5@4\

(@aAx=2 (b) A = 0 (EM Init) (¢) A = 0 (Random Init) (d) DNF (No Prior)
Figure 5: @) our proposed regularised objective, ([H) A set to O but using clever EM motivated

initialisation, A set to O with random initialisation of the forward drift, @) for reference DNF with
ft = 0 (uninformative Schrédinger prior).

This is a notably challenging task as we are trying to sample a rare event and as noted by Vargas et al.
(202Ta) many runs would result in collapsing into one path rather than bifurcating. In Figure [5| we
can observe how our proposed regularised approach (5a) is able to successfully transport particles
across the well whilst respecting the potential, whilst both variants of DNF using the EM-Init for ¢
(5b) and random init fail to respect the prior as nicely and do not bifurcate, with the random init
in particular sampling quite inconsistent trajectories. Finally for reference we train a DNF model
with f; = 0 and ¢ (5d) initialised at random to illustrate the significance of the initialisation of ¢.

G.2.1 DOUBLE WELL POTENTIAL

We used the following potential (Vargas et al., [2021al):

x _5 9 9 5 1 x2+y2
U((y)) —i(a; -1 4y —l—gexp (_6 ), (85)

with 6 = 0.35, furthermore, we used the boundary distributions:

-1 0.0125 0 1 0.0125 0
“NN<(0>’< 0 0.15))7 ””N(<0)’< 0 0.15))'
The Schrodinger prior is given by:

dY, = —Vy,U(Y,) dt + o dW,, (86)

with ¢ = 0.4. The terminal time is 7' = 1. Furthermore, we employ the same exponential
discretisation scheme as in the generative modelling experiments.

KL SBP Loss PINN Loss Cross Ent
Target Method
Val Train Val Train Val Train Val Train

tree A=0.5 1.67£0.02 1.40+0.01 47.84+1.58  42.31£1.52 0.06+0.00 0.05+0.00 2.87+0.01 2.80+0.01
DNF (EM Init) 1.63£0.02 1.39£0.01 55.33+1.79  49.60+1.68 1.74+0.04 1.64+0.04 2.88+0.01 2.80+0.01
olympics A=0.5 2.95+0.06  0.12+0.01 39.30+0.90  25.24+0.62 0.26x0.01 0.10+0.00 2.49+0.01 2.77+0.02
ympices DNF (EM Init) 2.70+0.05  0.02+0.01 40.20+0.77  38.30+1.53 1.64+£0.04 2.05+0.08  2.54+0.01 2.77+0.02
sierpinski A=0.5 2.31£0.01 2.20+0.01 28.54+1.49  26.67£0.90 0.04+0.00 0.03+0.00 2.82+0.01 2.83+0.01
sterp DNF (EM Init) 2.30+0.01 2.20+0.00 30.87+1.93  29.53%1.18 7.25+0.14 7.22+0.14 2.80+0.01 2.82+0.02
swirl A=0.5 15.6740.29 1.95+0.03 121.81+1.94 40.24+1.74 1.01+0.03 0.14+0.00 2.97+0.01 2.69+0.02
DNF (EM Init) 13.77+0.38 1.92+0.04 151.67+3.68 67.55+1.86 5.89+0.15 2.63+0.08 2.95+0.02 2.74+0.03
A=0.5 4.79+0.01 4.70+0.01 34.47+0.80  33.70£0.91 0.03+0.00  0.02+0.00 2.82+0.00 2.81+0.01

checkerboard

DNF (EM Init) 4.78+0.01 4.70+0.02  39.76+0.83 39.20+1.10  3.66+0.07 3.68+0.06  2.81+0.01 2.81+0.02

Table 10: Generative Modelling Results comparing DNF (Zhang & Chen, 2021) (A = 0) to our PINN
regualirsed approach with A = 0.5. We observe that PINN regularisation obtains similar KL and
Cross entropy losses to DNF whilst achieving lower distances to the prior.

G.3 IMPLEMENTATION DETAILS
G.3.1 NEURAL NETWORK PARAMETERISATIONS

Following |Zhang & Chen|(2021) and the recent success in score generative modelling we choose the
following parameterisations:

fu(@) +o*Vo(t,z), (87a)
fi(x) + 02Vo(t, x) — o?se(t, x), (87b)

at(m)
bt(.’B)
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PP CO &

Figure 6: Generated samples trained by our approach (A = 0.5) left and DNF (A = 0) right.
Qualitatively we can observe that both learned models have similarly matched marginals.

where sy is a score network (Song et al, 2021}, |De Bortoli et all, 2021} [Zhang & Chenl, 2021)) and
¢(t, x) is a neural network potential. We adapt the architectures proposed in|Onken et al.| (2021));
[Koshizuka & Sato| (2023)) to general activation functions. Note that these architectures allow for
fast computation of A¢ comparable to that of Hutchinson’s trace estimator (Grathwohl et al., 2019}
Hutchinson, [1989).

Finally, we remark that the parametrisation in (87b) allows us to learn the score of the learned SDE

and thus seamlessly adapt our approach to using the probability flow ODE at
inference time.

G.3.2 PINN Loss

For the PINN loss across all tasks, we sample the trajectories from Yb‘f’T ~ ?”’V‘z’ and thus employ

the same discretisation as used in the KL loss. However, we detach the trajectories %‘?;tmh((b) before
calculating the gradient updates in a similar fashion to |Niisken & Richter| (2021)).
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