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Abstract

We propose a computational method (with acronym ALDI) for sampling from a
given target distribution based on first-order (overdamped) Langevin dynamics which
satisfies the property of affine invariance. The central idea of ALDI is to run an
ensemble of particles with their empirical covariance serving as a preconditioner for
their underlying Langevin dynamics. ALDI does not require taking the inverse or
square root of the empirical covariance matrix, which enables application to high-
dimensional sampling problems. The theoretical properties of ALDI are studied in
terms of non-degeneracy and ergodicity. Furthermore, we study its connections to
diffusion on Riemannian manifolds and Wasserstein gradient flows.

Bayesian inference serves as a main application area for ALDI. In case of a forward
problem with additive Gaussian measurement errors, ALDI allows for a gradient-free
approximation in the spirit of the ensemble Kalman filter. A computational comparison
between gradient-free and gradient-based ALDI is provided for a PDE constrained
Bayesian inverse problem.

Keywords: Langevin dynamics, interacting particle systems, Bayesian inference, gradient
flow, multiplicative noise, affine invariance, gradient-free
AMS(MOS) subject classifications: 65N21, 62F15, 65N75, 65C30, 90C56

1 Introduction

In this paper, we propose an efficient sampling method for Bayesian inference which is
based on first-order (overdamped) Langevin dynamics [33] and which satisfies the property
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of affine invariance [13]. Here affine invariance of a computational method refers to the
fact that a method is invariant under an affine change of coordinates. A classical example
is provided by Newton’s method, while standard gradient descent is not affine invariant.
The importance of affine invariance as a general guiding principle for the design of Monte
Carlo sampling methods was first highlighted in the pioneering contribution [13].

Langevin dynamics based sampling methods, on the other hand, have a long history in
statistical physics [39] and computational statistics [38]. An important step towards affine
invariant Langevin sampling methods was taken through the introduction of Riemannian
manifold Langevin Monte Carlo methods in [12] with the metric tensor given by the Fisher
information matrix. However, the Fisher information matrix is typically not available
in closed form and/or is difficult to approximate numerically. Instead, an alternative
approach was put forward in the unpublished Master thesis [14], where an ensemble of
Langevin samplers is combined to provide an empirical covariance matrix resulting in a
preconditioned affine invariant MALA algorithm (see Section 3.3 for more details). This
methodology was put into the wider context of dynamics-based sampling methods in [22]
with a focus on second-order Langevin dynamics.

An interesting link between ensembles of Langevin samplers and the ensemble Kalman
filter [10, 20, 36], both relying on ensemble based empirical covariance matrices, has been
established more recently in [11] leading to a nonlinear Fokker–Planck equation for the asso-
ciated mean-field equations and an associated Kalman–Wasserstein gradient flow structure
in the space of probability measures. The same gradient flow structure has been previ-
ously identified for the time-continuous ensemble Kalman–Bucy filter mean-field equations
[35, 36]. Furthermore, if applied to a Bayesian inverse problem with additive Gaussian
measurement errors and nonlinear forward map, a gradient-free approximate Langevin
dynamics formulation has been proposed [11] which is again based on ideas previously
exploited in the ensemble Kalman filter literature [10, 4].

The present paper builds upon the unpublished note [30], which identifies a statistically
consistent finite ensemble size implementation of the mean-field equations put forward in
[11]. More precisely, the proposed interacting Langevin dynamics possesses the desired
posterior target measure as an invariant measure provided an appropriate correction term
is added, which is due to the multiplicative noise in the preconditioned Langevin system.
The correction term vanishes in the mean-field limit. Furthermore, the invariance of our
finite ensemble size evolution equations (with acronym ALDI1) under affine coordinate
transformations is established through a particular choice of the multiplicative noise term,
amongst all choices consistent with the desired underlying Fokker–Planck equation. We
emphasise that ALDI is straightforward to implement, does not require inversion or other
matrix factorisations of the empirical covariance matrices (which is important for high-
dimensional problems) and is applicable to a wide range of sampling problems.

We have already emphasised that related computational methods have been considered

1The acronym stands for a permutation of the capital letters in Affine Invariant Langevin Dynamics.
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in the literature before. However, none of these contributions has investigated the non-
degeneracy and ergodicity properties of such methods. Hence, proof of non-degeneracy
and ergodicity of ALDI provides a key theoretical contribution of our paper which holds
provided the ensemble size, N , and the dimension, D, of the underlying random variable
satisfy N > D + 1 and the empirical covariance matrix is non-degenerate at initial time.

Finally, a gradient-free formulation of ALDI in the spirit of [11] is proposed for Bayesian
inverse problems with additive Gaussian measurement errors. While the invariance of
the posterior distribution is lost when making the gradient-free approximation, except
for Gaussian likelihood functions, affine invariance is maintained. Numerical experiments
are conducted for a PDE constrained Bayesian inference problem. The numerical results
indicate in particular that it is entirely sufficient to implement ALDI with N = D +
2 particles; the minimum size required for ergodicity to hold. Thus the gradient-free
implementation indeed provides an accurate and computationally inexpensive alternative.

The remainder of this paper is structured as follows. The subsequent Section 2 es-
tablishes the mathematical setting of the sampling problems considered in this paper and
provides a unifying mathematical framework for ensemble-based first-order Langevin dy-
namics. Given this framework, we formulate the key algorithmic requirements on the
ensemble formulation proposed in this paper. We introduce the concept of affine invari-
ance and prove affine invariance for the nonlinear Fokker–Planck equations put forward in
[11]. The algorithmic contributions of this paper can be found in Section 3. More specifi-
cally, the novel ALDI method is put forward in Section 3.1 and its gradient-free variant in
Section 3.2. Both methods are put into the context of previous algorithmic work in Section
3.3. Our theoretical investigations are summarised in Section 4, where the affine invari-
ance, non-degeneracy and ergodicity of ALDI are proven. We also put our approach into
the perspective of diffusion processes on Riemannian manifolds [12, 24] and Wasserstein
gradient flows [1, 42]. The importance of the correction term is demonstrated for a PDE
constrained inverse problem [11] in the numerical example Section 5. We also compare
the performance of the gradient-based and gradient-free formulations of ALDI and find
that both lead to comparable numerical results with the gradient-free formulation however
much cheaper to implement. We conclude the paper with a summary section.

2 Mathematical problem formulation

We consider the computational problem of producing samples from a random variable u
with values in R

D and given probability density function (PDF)

π∗(u) =
1

Z
exp(−Φ(u)), (1)

where Φ : RD → R is an appropriate potential and

Z :=

∫

RD

exp(−Φ(u)) du < ∞ (2)
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a normalisation constant.

Example 1 (Bayesian inverse problems). The computational Bayesian inverse problem
(BIP) of sampling a random variable u conditioned on an observation yobs ∈ RK with
forward model

y = G(u) + ξ, (3)

serves as the main motivation of this paper. Here, G : RD → R
K denotes some nonlinear

forward map and the mean zero R
K-valued Gaussian random variable ξ represents mea-

surement errors with positive definite error covariance matrix R ∈ R
K×K. We assume that

ξ and u ∼ π0 are independent. Then, by Bayes’ theorem, the distribution of the conditional
random variable u|yobs is determined by

π(du|yobs) =
1

Z
exp(−l(u; yobs))π0(du), (4)

with the least-squares misfit function2

l(u; yobs) =
1

2
‖R− 1

2 (yobs − G(u))‖2 =:
1

2
‖yobs − G(u)‖2R (5)

and the normalisation constant

Z =

∫

RD

exp(−l(u; yobs))π0(du) < ∞. (6)

If the prior PDF π0 is Gaussian with mean µ0 ∈ R
D and covariance matrix P0 ∈ R

D×D,
then the posterior is absolutely continuous with respect to the Lebesgue measure on R

D with
PDF

π∗(u) =
1

Z
exp(−Φ(u; yobs)), (7)

where

Φ(u; yobs) := l(u; yobs) +
1

2
‖u− µ0‖2P0

. (8)

We write Φ(u) for simplicity and ignore the dependence on the data yobs from now on.

The sampling methods considered in this paper are based on stochastic processes of N
interacting particles moving in R

D with the property that the marginal distributions in
each of the particles approximate π∗ as t → ∞. The position of the ith particle is denoted

by u(i) ∈ R
D and its value at time t ≥ 0 by u

(i)
t , i = 1, . . . , N . For ease of reference, we

collect all particle positions into the D ×N -dimensional matrix

U =
(
u(1), u(2), . . . , u(N)

)
∈ R

D×N . (9)

2Here we have introduced the weighted l2-norm ‖a‖B = (aT
B

−1
a)1/2 for any symmetric positive-definite

matrix B.
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The interacting particle systems to be considered in this paper obey gradient-based stochas-
tic evolution equations of the form

du
(i)
t = −A(Ut)∇u(i)V(Ut) dt+ Γ(Ut) dW

(i)
t , i = 1, . . . , N. (10)

Specific choices for the potential V : RD×N → R, the positive semi-definite matrix-valued
A(U) ∈ R

D×D and Γ(U) ∈ R
D×L will be discussed below. L is a natural number with

typically either L = D or L = N . The W
(i)
t denote independent L-dimensional standard

Brownian motions and the Itô interpretation [33] of the multiplicative noise term in (10)
is to be used.

The main algorithmic contribution of this paper consists in developing a particular
instance of (10) with the following three properties:

(i) The product measure

π
(N)
∗ (U) :=

N∏

i=1

π∗

(
u(i)
)

(11)

is invariant under (10). Furthermore, π
(N)
∗ is ergodic in the sense that the joint law

of the process converges towards π
(N)
∗ as t → ∞, in an appropriate sense and under

suitable conditions on the initialisation. See [33] for an introduction to ergodicity in
the context of stochastic evolution equations.

(ii) The equations (10) are invariant under affine transformations of the state variables,
that is, for transformations of the form

u = Mv + b (12)

for any invertible M ∈ R
D×D and any shift vector b ∈ R

D. A precise definition of
affine invariance is provided in Definition 2 below. See also [13, 14, 22].

(iii) The equations (10) are straightforward and computationally efficient to implement,
that is, do not require the inversion or factorisation of D-dimensional matrices and/or
higher-order derivatives of the potential V.

Definition 2 (Affine invariance). Following [13, 14, 22], a formulation (10) is called affine
invariant under transformations of the form (12), that is,

u(i) = Mv(i) + b, (13)

if the resulting equations in the transformed particle positions are given by

dv
(i)
t = −A(Vt)∇v(i) Ṽ(Vt) dt+ Γ(Vt) dW

(i)
t , i = 1, . . . , N, (14)
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for any invertible matrix M ∈ R
D×D and any shift vector b ∈ R

D. Here

V =
(
v(1), v(2), . . . , v(N)

)
∈ R

D×N , (15)

and the potential Ṽ is defined by

Ṽ(V ) = V(U) = V(MV + b 1TN ), (16)

where 1N ∈ R
N denotes a column vector of ones.

Example 3 (Langevin dynamics). The classical example of (10) is provided by the scaled
first-order (overdamped) Langevin dynamics

du
(i)
t = −C∇u(i)Φ

(
u
(i)
t

)
dt+

√
2C1/2dW

(i)
t , (17)

where W
(i)
t , i = 1, . . . , N , denotes independent D-dimensional Brownian motion, C ∈

R
D×D is a constant symmetric positive-definite matrix and C1/2 denotes its symmetric

positive-definite square root. In this case, the particles do not interact and A = C. Fur-
thermore, Γ =

√
2C1/2 and the potential V is given by

V(U) =
N∑

i=1

Φ
(
u(i)
)
. (18)

We note that (17) satisfies items (i) and (iii) from above for any N ≥ 1 but not (ii), in
general. As pointed out in [22], the failure of (17) to be affine invariant potentially leads
to inefficient sampling when Φ is poorly scaled with respect to C. More specifically, in the
case of Bayesian inverse problems with Gaussian posterior, this scenario occurs when C is
vastly different from the target covariance.

Let π
(i)
t denote the PDF of the ith particle u

(i)
t at time t ≥ 0 with evolution equation (17).

Then these PDFs satisfy the Fokker–Planck equation

∂tπt = ∇u ·
(
πt C∇u

δKL(πt|π∗)
δπt

)
, (19)

with πt = πi
t and the Kullback–Leibler divergence defined by

KL(π|π∗) =
∫

RD

log

(
π(u)

π∗(u)

)
π(du). (20)

It has been shown in [16] that the Fokker–Planck equation (19) corresponds to a gradient
flow structure in the space of probability measures. Furthermore, since the variational
derivative of the Kullback–Leibler divergence is given by

δKL(πt|π∗)
δπt

= log πt − log π∗, (21)
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the invariance of the product measure (11) under the stochastic evolution equations (17)
follows immediately.

An important generalisation of the linear Fokker–Planck equation (19) has been pro-
posed in [11]. It relies on making the matrix C dependent on the PDF πt itself; thus leading
to a nonlinear generalisation of (19). More specifically, the nonlinear Fokker–Planck equa-
tion is given by

∂tπt = ∇u ·
(
πt C(πt)∇u

δKL(πt|π∗)
δπt

)
, (22)

with
C(πt) = Eπt

[
(u− µt)(u− µt)

T
]
, µt = Eπt [u] . (23)

This choice of C is motivated by the ensemble Kalman–Bucy filter [34, 35, 11]. The
associated generalised gradient flow structure in the space of probability measures was first
stated in [35] in the context of the ensemble Kalman–Bucy filter mean-field equations and
has been discussed in detail under the notion of the so-called Kalman–Wasserstein gradient
flow structure in [11]. See Section 3.3 and Remark 17 below for more details.

A key observation for the present paper is that, contrary to the classical Fokker–Planck
equation (19) with constant C, the nonlinear Fokker–Planck equation (22) is affine invari-
ant.

Lemma 4 (Affine invariance of Kalman–Wasserstein dynamics). The nonlinear Fokker–
Planck equation (22) is affine invariant.

Proof. We define the pushforward PDFs

π̃t(v) = |M |πt(Mv + b), π̃∗(v) = |M |π∗(Mv + b). (24)

Then

∂tπ̃t = |M | ∂tπt (25a)

= |M |∇u ·
(
πt C(πt)∇u

δKL(πt|π∗)
δπt

)
(25b)

= ∇v ·
(
π̃t C(π̃t)∇v

δKL(π̃t|π̃∗)
δπ̃t

)
. (25c)

Here we have used that
C(π̃t) = M C(πt)M

T, (26)

as well as ∇vf̃(v) = ∇vf(Mv+b) = MT∇uf(u) for functions f̃(v) = f(u) = f(Mv+b) and
an analog statement for the divergence operator. Furthermore, the variational derivatives
of the Kullback–Leibler divergences satisfy

δKL(πt|π∗)
δπt

= log

(
π

π∗

)
= log

(
π̃

π̃∗

)
=

δKL(π̃t|π̃∗)
δπ̃t

. (27)
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Building upon the affine invariance property of the nonlinear Fokker–Planck equation (22),
we demonstrate in the following section how to obtain stochastic evolution equations of the
form (10) which satisfy all three properties (i)–(iii) from above. Their theoretical properties
are studied in the subsequent Section 4. In particular, we establish non-degeneracy and
ergodicity, which provides the key theoretical contribution of this paper.

3 Affine invariant interacting Langevin dynamics

As noted in the previous section, the nonlinear Fokker-Planck evolution (22)-(23) satisfies

invariance of the target measure π
(N)
∗ (property (i)) as well as affine invariance (property

(ii)). In this section, we address (iii), that is, we present an interacting particle system of
the form (10) which has (22) as its mean field limit while still maintaining properties (i)
and (ii) for any finite number of particles. We also introduce a gradient-free approximation
which is applicable to BIPs of the form (8). This section concludes with a summary of
related previous algorithmic work.

3.1 ALDI: An exact gradient-based sampling method

In order to define our interacting particle system, let us first define the empirical covariance
matrix

C (U) :=
1

N

N∑

i=1

(
u(i) −m(U)

)(
u(i) −m(U)

)T
(28)

with empirical mean

m(U) :=
1

N

N∑

i=1

u(i) =
1

N
U 1N , (29)

that is, the particle-based estimators of the quantities defined in (23). We also introduce
the D×N matrix of the deviations of the particle positions from their mean value, that is

U ′ :=
(
u(1) −m(U), u(2) −m(U), . . . , u(N) −m(U)

)
= U −m(U) 1TN , (30)

which allows us to write

C (U) =
1

N
U ′(U ′)T. (31)

Furthermore, we define a generalised (non-symmetric) square root of C(U) via

C1/2(U) :=
1√
N

U ′, (32)

that is C = C1/2
(
C1/2

)T
. For a moment, let us assume that U ∈ R

D×N is such that C(U) is
invertible (we will comment on this assumption following Definition 5, see also Proposition
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10) and choose the preconditioning matrix

A(U) = C(U) =
1

N
U ′(U ′)T, (33)

the potential

V(U) =

N∑

i=1

Φ
(
u(i)
)
− D + 1

2
log |C(U)|, (34)

and the diffusion matrix

Γ(U) =
√
2 C1/2(U) =

√
2√
N

U ′ (35)

in (10), that is, L = N . Note that the potential (34) contains the additional −(D +
1)/2 log |C(U)| term in comparison to (18), which is required to keep the target distribution
(11) invariant under the state-dependent diffusion matrix C(U). See Proposition 7 below
and [30] for details.

Using the identity

C(U)∇u(i) log |C(U)| = 2

N

(
u(i) −m(U)

)
, (36)

which follows from Jacobi’s formula for the derivative of determinants (see the Appendix
for more details), we derive the following explicit form of the proposed interacting particle
Langevin dynamics.

Definition 5 (ALDI method). The affine invariant Langevin dynamics (ALDI) is given
by the interacting particle system

du
(i)
t = −C(Ut)∇u(i)Φ

(
u
(i)
t

)
dt+

D + 1

N

(
u
(i)
t −m(Ut)

)
dt+

√
2 C1/2(Ut) dW

(i)
t , (37)

for i = 1, . . . , N , where W
(i)
t denotes N -dimensional standard Brownian motion.

We emphasise that the generalised square root C1/2(U), as defined in (32), does not require
a computationally expensive Cholesky factorisation of C(U), and hence the formulation
(37) satisfies the requirement (iii). Note that although defining V as in (34) necessitates
N > D in order for the empirical covariance matrix C(U) to be non-singular, the terms in
(37) are well-defined also for N ≤ D. While a non-singular C(U) is required generically for

the ALDI method to sample from the desired target measure π
(N)
∗ (see the discussion in

Section 4.1), a smaller number of particles, N , is sometimes desirable in order to reduce
the computational cost for high-dimensional BIPs.

If indeed N ≤ D, than C(U) is singular and the dynamics of the interacting particle
system (37) is restricted to the linear subspace spanned by the N initial particle positions

u
(i)
0 , that is,

u
(i)
t =

N∑

j=1

mij
t u

(j)
0 . (38)
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Stochastic differential equations in the N2 scalar coefficients mij
t can easily be derived from

(37) using the ansatz (38). In other words, provided that the initial samples u
(i)
0 are ap-

propriately chosen, an implementation of (37) with N ≤ D can lead to a computationally
efficient reduction of the BIP onto a lower dimensional linear subspace. The affine invari-
ance of (37) holds regardless of the ensemble size and is discussed in Section 4.2 in more
detail.

3.2 Approximate gradient-free sampling

A central idea put forward in [11] (see also [32]) in the context of BIPs described in Example
1 is to combine the preconditioned Langevin dynamics with gradient-free formulations of
the ensemble Kalman filter. Recalling the forward map G from (3), the empirical cross-
correlation matrix D(U) ∈ R

D×K is defined via

D(U) =
1

N

N∑

i=1

(
u(i) −m(U)

)(
G(u(i))−m(G(U))

)T
(39)

with empirical mean

m(G(U)) =
1

N

N∑

i=1

G(u(i)) = 1

N
G(U) 1N . (40)

We now make the approximation C(U)∇uG(u) ≈ D(U), motivated by the fact that this
approximation becomes exact for affine forward maps, G(u) = Gu + c. We refer to [10,
Appendix A.1] for more details. In terms of the ALDI formulation (37) and the potential
Φ(u), given by (8), we obtain:

Definition 6 (gradient-free ALDI). Given a potential Φ(u) of the form (8), the gradient-
free ALDI formulation is given by the interacting particle system

du
(i)
t = −

{
D(Ut)R

−1
(
G
(
u
(i)
t

)
− yobs

)
+ C(Ut)P

−1
0 (u

(i)
t − µ0)

}
dt (41a)

+
D + 1

N

(
u
(i)
t −m(Ut)

)
dt+

√
2C1/2(Ut) dW

(i)
t , (41b)

for i = 1, . . . , N , where W
(i)
t denote independent N -dimensional standard Brownian mo-

tions.

While the invariance of π
(N)
∗ is lost under the gradient-free formulation (41) (except, of

course, for affine forward operators), affine invariance of the equations of motions is main-
tained; see Section 4.2.
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3.3 Related previous algorithmic work

The idea of an affine invariant Monte Carlo method based on Langevin dynamics using an
ensemble of particles and its empirical covariance first appeared in the unpublished Master
thesis [14]. More specifically, the author proposes an affine invariant modification of the

popular MALA algorithm [38, 12], where each particle u
(i)
k , i = 1, . . . , N , is sequentially

updated at time-step k using the proposal

u
(i)
k+1 = u

(i)
k − hM

(i)
k ∇

u
(i)
k

Φ(u
(i)
k ) +

√
2hL

(i)
k ξ

(i)
k (42)

where h > 0 is the step-size, M
(i)
k is an empirical covariance matrix based on a set of

particles not including u
(i)
k , L

(i)
k is the Cholesky factor of M

(i)
k , that is, M

(i)
k = L

(i)
k (L

(i)
k )T,

and ξ
(i)
k is a D-dimensional Gaussian random variable with mean zero and covariance ma-

trix ID×D. Independently of [14], a general time-continuous framework for affine invariant
interacting particle formulations has been developed in [22] and affine invariant implemen-
tations of second-order Langevin dynamics using empirical covariance matrices are studied
in detail.

More recently, ensemble preconditioned first-order Langevin dynamics has been revis-
ited in [11] with an emphasis on its mean-field limit and its connection to the ensemble
Kalman filter [10, 20, 36]. In fact, (37) appeared first in [11] with the potential (34) replaced
by (18), that is without the correction term

D + 1

N

(
u
(i)
t −m(Ut)

)
, (43)

and with C1/2(U) being replaced by the symmetric matrix square root of the covariance
matrix C(U). The resulting method is called the ensemble Kalman sampler (EKS) in [11].

The correction term (43) is, however, needed in (37) in order for π
(N)
∗ to be an invariant

distribution under the resulting interacting particle system (10) and first appeared in the

unpublished note [30]. The invariance of π
(N)
∗ under (37) is proven in Section 4.1.

The correction term (43) vanishes as N → ∞ for D fixed which justifies the nonlinear
Fokker–Planck equation (22) in this mean-field limit. See [11] for more details.

We note that a general discussion on necessary correction terms for Langevin dynamics
with multiplicative noise can, for example, be found in [38, 12] from the perspective of
Riemannian Brownian motion. We also note that general conditions on diffusion processes
that guarantee invariance of a given target distribution have been investigated in [8, Section
2.2] and [25, 22].

The gradient-free approximation of the form C(U)∇uG(u) ≈ D(U) originated in the
ensemble Kalman filter literature [10]. More precisely, the time continuous formulation of
the ensemble Kalman filter, the so-called ensemble Kalman–Bucy filter given by

du
(i)
t = −C(Ut)∇u(i)G

(
u
(i)
t

)
R−1

(
1

2

{
G
(
u
(i)
t

)
+m(G(Ut))

}
− yobs

)
, (44)
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fits into the interacting particle dynamics framework (10) with A(U) = C(U), Γ(U) = 0,
and

V(U) =
1

4

N∑

i=1

∥∥∥yobs − G
(
u(i)
)∥∥∥

2

R
+

1

4
‖yobs −m(G(U))‖2R. (45)

See [34, 35, 36] for more details. Its gradient-free formulation becomes

du
(i)
t = −D(Ut)R

−1

(
1

2

{
G
(
u
(i)
t

)
+m(G(Ut))

}
− yobs

)
(46)

[4, 36]. The derivative-free ensemble Kalman inversion (EKI) method [40, 19] is a slight

modification of (46) with the mean contribution m(G(U)) replaced by G
(
u
(i)
t

)
. This mod-

ification leads to a faster decay in the ensemble deviations U ′
t and, hence, in the covariance

matrix D(Ut) while retaining the evolution equation in the ensemble mean m(Ut).
The extension of such gradient-free formulations to Langevin dynamics has been pro-

posed first in [11]. Gradient-free formulations have been found to work well for unimodal
posterior distributions in [11], but fail for multi-modal distributions as demonstrated in
[37]. A localised covariance formulation of ALDI has been proposed in [37] to overcome
this limitation. Localised covariance matrices were already considered in [22]; but not in
the context of gradient-free formulations.

4 Theoretical analysis of ALDI

The aim of this section is to analyse some of the properties of the dynamics (37), in
particular verifying the conditions (i) and (ii) outlined in Section 2. The key observation
(crucially depending on the correction term D+1

2 log |C(U)| to the potential V in (34)) is
that the corresponding Fokker–Planck equation has the same mathematical structure as
its counterpart (22) for the mean-field regime:

Proposition 7 (Linear Fokker–Planck equation). Let Ut, as defined by (9), satisfy the

stochastic evolution equations (37) and assume that the time-marginal PDF π
(N)
t of Ut is

smooth. Then π
(N)
t satisfies the linear Fokker–Planck equation

∂tπ
(N)
t =

N∑

i=1

∇u(i) ·


π

(N)
t C ∇u(i)

δKL
(
π
(N)
t |π(N)

∗

)

δπ
(N)
t


 . (47)

Proof. The proof can be found in the Appendix. See also the technical report [30].

Note that the PDF π
(N)
t in (47) is defined on the extended space RD×N , whereas πt in (22)

is defined on R
D. In contrast to (47), the mean-field equation (22) is nonlinear since C(πt)

depends on the solution πt itself.
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4.1 Non-degeneracy and ergodicity

As a first result, we have that property (i) is satisfied for the extended target measure (11)
on the joint state space R

D×N . This follows directly from Proposition 7:

Corollary 8 (Invariance of the posterior measure). The extended target measure (11) is

invariant for (37), that is, if U0 ∼ π
(N)
∗ , then Ut ∼ π

(N)
∗ for all t ≥ 0.

Proof. Observe that KL(π(N)|π(N)
∗ ) is minimised for π(N) = π

(N)
∗ , and hence

δKL
(
π(N)|π(N)

∗

)

δπ(N)

∣∣∣
π(N)=π

(N)
∗

= 0.

Using (47), we immediately see that ∂tπ
(N)
∗ = 0, implying the claimed result.

Note that π
(N)
∗ is not the unique invariant measure for the dynamics (37). For instance,

if U =
(
u(1), . . . , u(N)

)
with u(1) = u(2) = . . . = u(N), then C(U) = 0 and u(i) = m(U),

and hence δU (the Dirac measure centred at U) is invariant. To ensure favourable ergodic

properties, we need to prove that π
(N)
∗ is the unique invariant measure that is reachable

by the dynamics from an appropriate set of initial conditions. First, we shall make the
following assumption on the potential Φ:

Assumption 9 (Regularity and growth conditions on the potential Φ). Assume that Φ ∈
C2(RD) ∩ L1(π∗). Furthermore, assume that there exists a compact set K ⊂ R

D and
constants c2 > c1 > 0 such that

c1|u|2 ≤ Φ(u) ≤ c2|u|2, (48a)

c1|u| ≤ |∇Φ(u)| ≤ c2|u|, (48b)

c1ID×D ≤ Hess Φ(u) ≤ c2ID×D, (48c)

for all u ∈ R
D \K.

The bound (48c) is to be understood in the sense of quadratic forms. Assumption 9 is
satisfied for target measures with Gaussian tails. Indeed, Φ = Φ0 + Φ1 is admissible,
where Φ0(u) =

1
2u · Su is quadratic (with S ∈ R

D×D strictly positive definite), and Φ1 ∈
C∞
c (RD) is a smooth perturbation with compact support. We would like to emphasise that

Assumption 9 can be relaxed with minimal effort, but we refrain from doing so for ease of
exposition.

Due to the fact that C(U) is not uniformly bounded from below on R
D×N , the associated

Fokker-Planck operator is not uniformly elliptic and standard ergodicity results are not
applicable. However, we have the following non-degeneracy result.

13



Proposition 10 (Non-degeneracy of the empirical covariance matrix). Let Assumption 9
be satisfied and assume that C(U0) is strictly positive definite. Then (37) admits a unique
global strong solution, and C(Ut) stays strictly positive definite for all t ≥ 0, almost surely.

Proof. The proof rests on the identity (36) so that (37) can be written in the form

du
(i)
t = −C(Ut)∇u(i)V(Ut) dt+

√
2C1/2(Ut) dW

(i)
t , i = 1, . . . , N, (49)

with the potential V given by (34), making use of the repulsive effect of the term

−D + 1

2
log |C(U)|.

Details can be found in the Appendix.

With Proposition 10 in place, the proof of the following ergodicity result is relatively
straightforward:

Proposition 11 (Ergodicity). Assume the conditions from Proposition 10, and further-

more that N > D + 1. Then the dynamics is ergodic, that is, π
(N)
t → π

(N)
∗ as t → ∞ in

total variation distance.

Proof. The proof can be found in the Appendix.

Remark 12. In the case when N ≤ D, ergodicity will not hold, since the dynamics is
constrained to a subspace according to the discussion following Definition 5. In the case
when N = D + 1 one can show that the set

E =
{
U ∈ R

D×N : C(U) is invertible
}

(50)

has two connected components. The dynamics will then be ergodic with respect to π
(N)
∗

restricted to one of these, depending on the initial condition. This is acceptable from an
algorithmic viewpoint, but we do not treat this case separately for simplicity.

4.2 Affine invariance

We show that (37) and its gradient-free variant (41) are affine-invariant, in the terminology
introduced in [13, 14] and summarised in Definition 2.

Lemma 13 (Affine invariance of ALDI). The Fokker–Planck equation (47), its associated
interacting particle system (37) as well as its gradient-free formulation (41) are all affine
invariant.

14



Proof. We follow the proof of Lemma 4. Since C(U) = M C(V )MT we also have A(U) =
MA(V )MT. Furthermore,

∇v(i) f̃(V ) = ∇v(i)f
(
MV + b 1TN

)
= MT∇u(i)f(U) (51)

for functions f̃(V ) = f(U) = f
(
MV + b 1TN

)
, and an analogous statement holds for the

divergence operator. Finally, equality (27) also holds for the Kullback–Leibler divergences
over extended state space. Along the same lines, the affine invariance can also be checked
directly at the level of the stochastic differential equations (37). In particular, it holds that
C1/2(U) = MC1/2(V ). Furthermore,

D(U) = MD(V ) (52)

with G̃(v) = G(Mu + b) and D(V ) the empirical covariance matrix between v and G̃(v).
This implies the affine invariance of the gradient-free formulation (41).

Remark 14 (Path-wise versus distributional affine invariance). Definition 2 is based on
path-wise affine invariance at the level of the SDE (10). Path-wise invariance implies affine

invariance of the associated time-marginal distributions π
(N)
t , that is, affine invariance of

the implied Fokker–Planck equation. The converse is not true, in general.

4.3 Geometric properties and gradient flow structure

In this section, we place the dynamics (37) in a geometric context, viewing (a suitable
subset of) R

D×N as a Riemannian manifold when equipped with an appropriate metric
tensor. This approach has been pioneered in [12]; we also recommend the review paper
[24]. Leveraging this perspective, we show that the evolution induced by (37) on the set
of smooth PDFs can be interpreted as a gradient flow in the sense of [16]. In the limit as
N → ∞ we formally recover the Kalman–Wasserstein geometry introduced in [11].

We restrict our attention to the case N > D + 1 in this section, when the dynamics
(37) is ergodic on the set E, as defined in (50), according to Proposition 11. Extending
the framework to the case when N ≤ D + 1 is subject of ongoing work. We now turn E
into a D×N -dimensional Riemannian manifold. Denoting the γ-th coordinate of the i-th
particle by U (γ,i), we introduce the metric tensor

g =
N∑

i=1

D∑

γ,σ=1

C−1
γσ dU

(γ,i) dU (σ,i), (53)

In what follows, we will denote by dvolg the Riemannian volume, by ∇g the Riemannian
gradient, by (W g

t )t≥0 Riemannian Brownian motion and by dg the geodesic distance on
(E, g). For more details, we refer to [15, 21] and, in the context of computational statistics,
to [24]. Using these objects induced by g, both the SDE (37) and the corresponding Fokker–
Planck equation (47) admit a compact formulation:
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Proposition 15 (Riemmanian interpretation of ALDI). Let π(N),g denote the density of

π(N) with respect to the Riemannian volume, that is, π(N),g dvolg = π(N) dU and π
(N),g
∗ dvolg =

π
(N)
∗ dU . Then the dynamics (37) can be written in the form

dUt = ∇g
U log π

(N),g
∗ (Ut) dt+

√
2 dW g

t , (54)

and the Fokker–Planck equation (47) can be written in the form

∂tπ
(N),g
t = ∇g

U ·
(
π
(N),g
t ∇g

U

δKL(π
(N)
t |π(N)

∗ )

δπ
(N)
t

)
. (55)

Remark 16. Note that the Kullback–Leibler divergence and its functional derivative depend
on the measures but not on the respective densities, in contrast to the Onsager operator

[26, 29, 31] φ 7→ −∇g
U ·
(
π
(N),g
t ∇g

Uφ
)
.

Proof. Using the results from [24], in particular the equations (46)-(47), the proof of the
first statement reduces to verifying that

∂Jg
IJ =

D + 1

N

(
u(i) −m(U)

)
γ
, (56)

where gIJ stands for the components of the inverse of g, and we have used the notation
I = (γ, i) and J = (σ, j). Furthermore, we apply Einstein’s summation convention here
and in the remainder of this proof. The statement (56) follows directly from the definition
of g and the identity [30]

∇u(i) · C(U) =
D + 1

N
(u(i) −m(U)) (57)

giving rise to the drift correction (43). Indeed, together with the coordinate expressions

∇g
U · f =

1√
|g|

∂I

(√
|g|f I

)
, (∇g

UV )I = gIJ∂JV (58)

for vector-valued functions f and scalar-valued V , the result follows by direct substitution.
For the second statement, note that dvolg =

√
|g| dU , and hence π(N),g = |g|−1/2π(N).

To exhibit the gradient flow structure, we recall that the natural quadratic Wasserstein
distance between probability measures defined on (E, g) is given by

W2
g

(
µ(N), ν(N)

)
= inf

γ∈Π(µ(N),ν(N))

∫

E×E
d2g(U, V ) dγ(U, V ), (59)
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where Π
(
µ(N), ν(N)

)
denotes the set of probability measures on E × E with marginals

µ(N) and ν(N). It is well-known that the evolution (55) can be interpreted as gradient flow
dynamics of the Kullback–Leibler divergence on the set of probability measures equipped
with the distance (59), see for instance [42, Chapter 15] or [23]. By the Benamou–Brenier
formula [3], we have the representation

W2
g

(
µ(N), ν(N)

)
= inf

{πt,Φt}

{∫ 1

0

∫

E
g(∇g

UΦt,∇g
UΦt) dπt dt : (60a)

∂tπ
g
t +∇g

U · (πg
t ∇g

UΦt) = 0, π0 = µ(N), π1 = ν(N)

}
, (60b)

where the constraining continuity equation in (60b) is to be interpreted in a weak form and
we again denoted by πg the density of π with respect to dvolg. In standard coordinates
(using the definition (53) as well as the formulas (58)) we see that

W2
g

(
µ(N), ν(N)

)
= inf

{πt,Φt}

{∫ 1

0

∫

E
∇UΦt · C ∇UΦt dπtdt : (61a)

∂tπt +∇U · (πtC ∇UΦt) = 0, π0 = µ(N), π1 = ν(N)

}
, (61b)

revealing a close similarity with the Kalman–Wasserstein distance (here denoted byWKalman)
introduced in [11]. Indeed, let us choose µ(N) := ⊗N

i=1µ
(i) and ν(N) := ⊗N

i=1ν
(i), the prod-

uct measures on R
D×N associated to µ, ν ∈ P(RD), where µ(i) and ν(i), i = 1, . . . , N are

understood to be identical copies of µ and ν. We formally expect that

1

N
W2

g

(
µ(N), ν(N)

)
N→∞−−−−→ WKalman(µ, ν), (62)

using that C(U) ≈ C(π) for sufficiently large N , where C(π) was defined in (23). A rigorous
passage from Wg to the Kalman–Wasserstein distance might be a rewarding direction
for future research; we note that a similar analysis (relating the gradient flow structures
associated to a finite particle system and its mean-field limit) has been carried out recently
in [5].

Remark 17 (Gradient flow structure of the ensemble Kalman–Bucy filter). Taking the
formal mean-field limit of the ensemble Kalman–Bucy filter (44) leads to the following
evolution equation in the marginal densities πt:

∂tπt = ∇u ·
(
πtC(πt)∇u

δFEnKBF(πt)

δπt

)
(63)
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with potential

FEnKBF(π) =
1

4

∫

RD

‖yobs − G(u)‖2R π(u) du+
1

4
‖yobs − Eπ[G(u)]‖2R, (64)

which arises naturally from (45) in the limit N → ∞ [35, 36]. Note that (63) is exactly
of the form (22) with the Kullback–Leibler divergence being replaced by the potential (64).
Its gradient flow structure in the space of probability measures has been first discussed in
[35, 36] and is equivalent to the Kalman–Wasserstein gradient flow structure introduced
in [11]. The mean-field limit of the EKI [40, 19] also fits within this framework with the
potential FEnKBF(π) replaced by

FEKI(π) =
1

2

∫

RD

‖yobs − G(u)‖2R π(u) du. (65)

The affine invariance of both the EnKBF and EKI follows along the lines of Lemma 4.
As for the finite ensemble size formulations, one expects a slower decay of FEnKBF(πt)
compared to FEKI(π).

5 Numerical experiment: A PDE constrained inverse prob-

lem

We consider the inverse problem of determining the permeability field a(x) > 0 in the
elliptic partial differential equation (PDE)

− ∂x(a(x)∂xp(x)) = f(x), x ∈ Ω = [0, 2π), (66)

from K = 10 observed grid values

yj = p(xj) + ηj, xj =
2π(j − 1)

K
, (67)

j = 1, . . . ,K, of the pressure field p for a given forcing f . Both p and f are assumed to
integrate to zero over the domain Ω. The measurement errors ηj in (67) are i.i.d. Gaussian
with mean zero and variance σR = 10−4. A related 2-dimensional Darcy flow problem
has been studied in [11]. In this paper, we restrict the simulations to the 1-dimensional
formulation (66) for computational simplicity.

This infinite-dimensional problem is made finite-dimensional by introducing a compu-
tational grid

xi =
2πi

D
, i = 0, . . . ,D − 1, (68)

with D = 50 grid points. Hence (66) gets replaced by the finite-difference formulation

ai+1/2(pi+1 − pi)− ai−1/2(pi − pi−1)

h2
= −fi, (69)
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i = 1, . . . ,D. Here h = 2π/D denotes the mesh size and pi ≈ p(xi), etc. We also make use
of the periodicity and set pD = p0 as well as fD = f0 .

Since the permeability field should be non-negative, we set

ai−1/2 = exp(ui) (70)

for i = 1, . . . ,D. The computational forward problem is now given by the solution {pi}D−1
i=0

to (69) for given {fi}D−1
i=0 and {ui}Di=1 and its restriction to the observation grid {xj}Kj=1.

We denote this map by G(u), suppressing the dependence on the forcing given by

fi = exp

(
−(2xi − L)2

40

)
− cf , (71)

where cf > 0 is chosen such that the forcing has mean zero. The measurement error
covariance matrix is given by R = σRIK×K. This completes the description of our forward
model (3).

The prior distribution on u ∈ R
D is assumed to be Gaussian with mean zero and

covariance matrix P0 defined by

P−1
0 = 4h

( µ

D
1D1

T
D −∆h

)2
, (72)

where ∆h denotes the standard second-order finite-difference operator over Ω with mesh-
size h and periodic boundary conditions, that is, the operator defined by the left-hand side
of (69) with ai±1/2 = 1. The parameter µ > 0 is set to µ = 102 leading to a penalty on the

(spatial) mean of u = {ui}Di=1 to be close to zero.
The observations (67) are generated numerically by solving (69) with the reference

permeability field given by
a†i−1/2 = exp(u†i ), (73)

where

u†i =
1

2
sin(xi − h/2) (74)

for i = 1, . . . ,D, and setting

yj = pl + ηj , l =
D

K
j = 5j, ηj ∼ N (0, σR), (75)

j = 1, . . . ,K.
We implemented the gradient-based ALDI formulation (37) as well as the gradient-free

ALDI formulation (41) using the Euler–Maruyama method with step-size ∆t = 0.01 over
a time interval t ∈ [0, 20]. In line with [11] we refer to the ALDI implemented without
the correction term (43) as the ensemble Kalman sampler (EKS). The ensemble sizes were
taken as N = 25, 52, 100, 200. Except for the smallest ensemble size, all other choices
resulted in non-singular empirical covariance matrices C(Ut).
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We compare the simulation results based on the estimation bias

BIAS =
h

T

∫ τ+T

τ
‖m(Ut)− u†‖2 dt (76)

and the ensemble spread

SPREAD =
h

T

∫ τ+T

τ
trace (C(Ut)) (77)

computed along numerical solutions for τ = 12 and T = 8. Each experiment was repeated
ten times to reduce the impact of random effects. The results can be found in Tables 1 and
2, respectively. It can be seen that the correction term has a profound impact on both the
bias as well as the ensemble spread for the smallest ensemble size N = 25. This effect is
largely diminished for the largest ensemble size of N = 200. We also find that the gradient-
free implementations yield results which are essentially indistinguishable from those based
on the exact gradient while being computationally much more efficient. Finally, the results
for ALDI indicate that it is entirely sufficient to implement it with N = D + 2 = 52
particles; the minimum size required for ergodicity to hold.

N gf-EKS gf-ALDI g-EKS g-ALDI

25 0.5035 0.4113 0.4940 0.4042
52 0.3748 0.3028 0.3706 0.2957
100 0.3215 0.3070 0.3166 0.3016
200 0.3088 0.3081 0.3030 0.3009

Table 1: Computed estimation bias (76) for ensemble sizes N ∈ {25, 51, 100, 200} and
implementations of ALDI and EKS as well as with exact gradient (g) and gradient-free
(gf).

N gf-EKS gf-ALDI g-EKS g-ALDI

25 0.0082 0.0724 0.0083 0.0738
52 0.0135 0.0475 0.0134 0.0476
100 0.0219 0.0457 0.0218 0.0457
200 0.0337 0.0453 0.0336 0.0453

Table 2: As in Table 1, but reporting the results for the ensemble spread (77).

In order to provide a better insight into the impact of the correction term (43) on the
final ensemble distributions we display results for M = 25 and M = 200 in Figures 1 and
2, respectively.
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Figure 1: Displayed are the initial (top row) and final (bottom row) ensembles of the
permeability fields a(x) = exp(u(x)) for N = 25. The left column is from the EKS while
the right column is from the ALDI method.
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Figure 2: As in Figure 1, except for ensemble size N = 200.
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We conclude from this simple experiment that the correction term (43) is required for
implementations of ALDI whenever the ensemble size is of the order of the dimension of the
parameter space or less. The experiments also confirm that gradient-free implementations
can offer a computationally attractive alternative to gradient-based implementations of
ALDI.

6 Conclusions

We have proposed a finite ensemble size implementation of the Kalman–Wasserstein gra-
dient flow formalism put forward in [11], which requires the inclusion of a correction term
(43) due to the multiplicative nature of the noise in the Langevin equations (37) [30]. In
addition to sampling from the desired target distribution, it has also been demonstrated
that the equations of motion are affine invariant. While ALDI can be used with N ≤ D
ensemble members, effectively leading to a linear subspace sampling method, it has also
been proven that N > D + 1 and a non-singular initial empirical covariance matrix C(U0)
ensure that |C(Ut)| 6= 0 for all t ≥ 0 and that the equations of motion (37) are ergodic

with invariant measure π
(N)
∗ . Further computational savings can be achieved through the

gradient-free implementation (41) for BIPs as introduced in Example 1. The effectiveness
of gradient-free affine invariant sampling methods has been demonstrated for a Darcy flow
inversion problem. This example has also demonstrated the significance of the correction
term for reducing estimation errors both for N < D as well as for N = O(D) implementa-
tions of the ALDI method (37).

A numerical issue which has not been studied in this paper is the choice of an efficient
time-stepping method for ALDI. In particular, adaptive and semi-implicit time-stepping
methods might be necessary whenever the initial distribution π0 is not close to the target
measure π∗. This issue has been studied for the related continuous-time ensemble Kalman–
Bucy filter in [2]. We also reemphasise that multi-model target distributions might require
localised empirical covariance matrices in (37) as first suggested in [22] and further explored
in [37].

While this paper has focused on a theoretical investigation and computational imple-
mentation of finite-sample size interacting Langevin dynamics, we wish to point out that
the Kalman–Wasserstein gradient flows proposed in [35, 11] have also become the focus
of theoretical studies. We mention in particular [7], which provides a rigorous mean field
limit with rates in Wasserstein-2 for the linear case, and [6], which studies the decay for
the mean field limit in Wasserstein-2 in the linear case using explicitly the dynamics of the
covariance matrix.
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Appendix: Proofs for non-degeneracy and ergodicity

Proof of Proposition 7. The Fokker–Planck equation is given by

∂tπ
(N)
t = L†π

(N)
t , (78)

where L denotes the infinitesimal generator of (37) and L† refers to its adjoint in L2(RD×N ),
given by

(
L†π(N)

)
(U) =

N∑

i=1

∇u(i) ·
(
π(N)(U)

{
C(U)∇u(i)Φ(u(i))− D + 1

N
(u(i) −m(U)

})
(79a)

+

N∑

i=1

∇u(i) ·
{
π(N)(U)∇u(i) · C(U) + C(U)∇u(i)π(N)(U)

}
, (79b)

see [33, Chapter 4] and [22]. Here the divergence of the matrix-valued C(U) is component-
wise given by (in terms of the notation introduced in Section 4.3)

{(∇u(i) · C(U))}k =
D∑

γ=1

∂

∂U (γ,i)
{C(U)}kγ , k = 1, . . . ,D. (80)

An explicit calculation [30] leads to (57) and the Fokker–Planck operator L† reduces to

L†π(N) =

N∑

i=1

∇u(i) ·
(
π(N) C

{
∇u(i)Φ+∇u(i) log π(N)

})
(81a)

=

N∑

i=1

∇u(i) ·
(
π(N) C ∇u(i) log

π(N)

π
(N)
∗

)
(81b)

from which the desired result follows since

δKL(π(N)|π(N)
∗ )

δπ(N)
= log

π(N)

π(N)∗
. (82)

For the proof of Proposition 10 we recall the definition (50) of the set E ⊂ R
D×N . We

will use the potential V defined in (34) as a Lyapunov function. The key calculation is
summarised in the following lemma:
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Lemma 18. There exists a constant γ > 0 such that

(LV)(U) ≤ γV(U), U ∈ E, (83)

where L is the generator of (37), that is, the L2(RD×N )-adjoint of L† as defined in (81).

Proof. It follows from (81) that the generator of (37) takes the form

(LV)(U) = −
N∑

i=1

∇u(i)Φ(u(i)) · C(U)∇u(i)V(U) +

N∑

i=1

∇u(i) · (C(U)∇u(i)V(U)) . (84)

For convenience, let us introduce the notation

VC(U) = −D + 1

2
log |C(U)|, VΦ(U) =

N∑

i=1

Φ(u(i)). (85)

Since L vanishes on constants, (83) is equivalent to LV ≤ γV + C̃ for some constant
C̃. Here and in the following, C̃ denotes a generic constant that can change from line
to line. Furthermore, by the growth condition on Φ there exists a constant C̃ such that
−2VC ≤ VΦ + C̃. Therefore, it is sufficient to show the bound LV ≤ C̃(1 + VΦ). In the
remainder of the proof, we achieve the latter bound term-wise for the contributions in (84).

First note that

∇u(i) log |C(U)| = 2

N
C−1(U)(u(i) −m(U)), i = 1, . . . , N. (86)

Indeed, again following the notation introduced in Section 4.3, we have that

∂

∂U (γ,i)
log |C(U)| =


 1

|C|
D∑

α,β=1

∂|C|
∂Cαβ

∂Cαβ

∂U (γ,i)


 (U) (87a)

=

D∑

α,β=1

(C−1)αβ

(
1

N
δαγ(u

(i) −m(U))β +
1

N
δβγ(u

(i) −m(U))α

)
(87b)

=
2

N

(
C−1(u(i) −m(U))

)
γ
, (87c)

using Jacobi’s formula for determinants in the second line. For the first term in (84) we
thus obtain

−
N∑

i=1

∇u(i)Φ(u(i)) · C(U)∇u(i)V(U) (88a)

= −D + 1

N

N∑

i=1

∇u(i)Φ(u(i)) · (u(i) −m(U))−
N∑

i=1

∇u(i)Φ(u(i)) · C(U)∇u(i)Φ(u(i))

︸ ︷︷ ︸
≤0

(88b)

≤ C̃ (1 + VΦ(U)) . (88c)
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To bound the second term in (84), we first notice the estimate

N∑

i=1

∇u(i) ·
(
C(U)∇u(i)Φ(u(i))

)
≤ C̃ (1 + V(U)) , (89)

again easily obtained from Assumption 9. The other contribution is

N∑

i=1

∇u(i) · (C(U)∇u(i)VC(U)) = −D + 1

N

N∑

i=1

∇u(i) ·
(
u(i) −m(U)

)
(90a)

= −(D + 1)D

2N
(N − 1) . (90b)

Since the result is a constant, we clearly have the required estimate of the form LV ≤
C̃(1 + VΦ). In conjunction with (88) and (89) the claim follows.

Proposition 10 now essentially follows from adapting [28, Theorem 2.1]. Textbook accounts
of similar arguments can be found in [17, Chapter 5] and [9, Chapter 2]. For the convenience
of the reader we provide a self-contained proof:

Proof of Proposition 10. The potential V is bounded from below by the growth condition
on Φ (see Assumption 9). We can therefore choose a constant cV such that V+ := V + cV
is nonnegative. Since C(U0) is assumed to be nondegenerate, there exists k0 ∈ N such that
V+(U0) < k0. For k ≥ k0, let us define the sets

Ek = {U ∈ E : V+(U) < k} (91)

and the stopping times

τk = inf{t ≥ 0 : Ut /∈ Ek} = inf {t ≥ 0 : V+(Ut) = k} . (92)

The stopping times τk are increasing in k, and so the limit

lim
k→∞

τk =: ξ

exists in [0,+∞]. To prove the claim, it is sufficient to show that P[ξ = +∞] = 1. We now
define

g(U, t) := e−γtV+(U), (U, t) ∈ E × [0,∞), (93)

where γ is the constant obtained in Lemma 18. By using Itô’s formula, optional stopping,
and the bound (83) we see that

E [g(Ut∧τk , t ∧ τk)] = g(U0, 0) + E

[∫ t∧τk

0
e−γs (−γV+(Us) + LV+(Us)) ds

]
(94a)

≤ g(U0, 0) = V+(U0), (94b)
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for any t ≥ 0 and k ≥ k0. On the other hand,

E [g(Ut∧τk , t ∧ τk)] ≥ e−γt
E [V+(Ut∧τk)] (95a)

≥ e−γt (E [1t<τkV+(Ut)] + P [τk ≤ t] · k) ≥ e−γt (P [τk ≤ t] · k) , (95b)

where the last estimate uses the fact that V+ ≥ 0. Combining (94) and (95), we see that

eγtV+(U0) ≥ P [τk ≤ t] · k, (96)

for every t ≥ 0 and k ≥ k0. It follows immediately that

lim
k→∞

P [τk ≤ t] = 0, (97)

and further
P [ξ ≤ t] = 0 (98)

by monotone convergence. Since (98) holds for all t ≥ 0, we conclude that P[ξ = ∞] = 1,
as required.

For the proof of Proposition 11 we will need the following lemma:

Lemma 19. Let N ≥ D + 2. Then E is path-connected.

Proof. We begin by fixing some additional notation. For j ∈ {1, . . . , N}, define the ‘leave-
one-out’ versions of the empirical mean and covariance,

m−j(U) =
1

N − 1

N∑

i=1
i 6=j

u(i), C−j(U) =
1

N − 1

N∑

i=1
i 6=j

(u(i)−m−j(U))(u(i)−m−j(U))T. (99)

Notice the update formula

C(U) =
N − 1

N
C−j(U) +

N − 1

N2
(u(j) −m−j(U))(u(j) −m−j(U))T, (100)

holding for any j ∈ {1, . . . N}. Consider now the set

Ẽ :=
{
U ∈ R

D×N : C−j is invertible for all j ∈ {1, . . . , N}
}
. (101)

We see that Ẽ ⊂ E since the second term on the right-hand side of (100) is positive
semidefinite. Importantly, the condition N ≥ D + 2 ensures that Ẽ is nonempty.

Observe that Ẽ has the representation

Ẽ =



U ∈ R

D×N :

N∏

j=1

|C−j(U)| > 0



 , (102)
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immediately implying that Ẽ is open. We now show that Ẽ is dense in R
D×N . To this

end, let X ∈ R
D×N and Y ∈ Ẽ. It is sufficient to prove that for every ε > 0 there exists

t ∈ (0, ε) such that (1− t)X + tY ∈ Ẽ. For this, define P : R → R by

P (t) =

N∏

j=1

|C−j((1 − t)X + tY )|, (103)

which is clearly a polynomial. Since Y ∈ Ẽ we have that P (1) > 0, and so P has only
finitely many zeroes. This proves that indeed for all ε > 0 there exists t ∈ (0, ε) such that
P (t) > 0, and hence (1− t)X + tY ∈ Ẽ.

We now show how to construct a continuous path between arbitrary X,Y ∈ E. By
density of Ẽ, it is enough to find a path between X̃ ∈ Ẽ and Ỹ ∈ Ẽ lying in connected
neighbourhoods of X and Y respectively. Since Ẽ is open, there exist open neighbourhoods
U
X̃
, U

Ỹ
⊂ Ẽ. It is then sufficient to find points in these neighbourhoods that can be

connected by a continuous path. Denoting X̃ = (x(1), . . . , x(N)) and Ỹ = (y(1), . . . , y(N)),
we can choose a continuous path γ(1) : [0, 1] → R

D with γ(1)(0) = x(1) and γ(1)(1) = y(1),
and set γ(1)(t) = (γ1(t), x(2), . . . , x(N)). By (100), it is clear that γ(1)(t) ∈ E for all
t ∈ [0, 1]. By density of Ẽ we can perturb γ(1)(1) in order to ensure that γ(1)(1) ∈ Ẽ.
We can now proceed iteratively to move the remaining particles using paths γ(2), . . . γ(N)

and concatenate them, yielding the required total path. Note that the perturbation of the
endpoints of γ(i) can be chosen arbitrarily small in order to ensure that the final point
γ(N)(1) belongs to U

Ỹ
.

Proof of Proposition 11. Since the diffusion matrix Γ(U)Γ(U)T is strictly positive definite
on E, E is path-connected by Lemma 19, and the process (Ut)t≥0 admits an invariant
measure with strictly positive Lebesgue-density by Corollary 8, the process is positively
recurrent and irreducible by the result in [18]. We also refer to [41, Section 2.2.2.1]. The
convergence in total variation distance then follows from [27, Theorem 6.1].

References
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