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In this paper we develop a general framework for constructing and analysing coupled
Markov chain Monte Carlo samplers, allowing for both (possibly degenerate) diffusion
and piecewise deterministic Markov processes. For many performance criteria of in-
terest, including the asymptotic variance, the task of finding efficient couplings can be
phrased in terms of problems related to optimal transport theory. We investigate general
structural properties, proving a singularity theorem that has both geometric and prob-
abilistic interpretations. Moreover, we show that those problems can often be solved
approximately and support our findings with numerical experiments. For the particular
objective of estimating the variance of a Bayesian posterior, our analysis suggests us-
ing novel techniques in the spirit of antithetic variates. Addressing the convergence to
equilibrium of coupled processes we furthermore derive a modified Poincaré inequality.

1. Introduction and motivation

Many computational problems arising in machine learning, Bayesian statistics, molecular dynamics
and various other fields require the approximation of probability distributions (in the following de-
noted by π) on a high-dimensional space E. In particular, uncertainty quantification in a Bayesian
framework is intimately related to the evaluation of appropriate summary statistics such as the
variance of the posterior [35, Chapter 10], [79, Chapter 8], [80, Chapter 6]. Often, this task is
approached by considering empirical measures associated to an ensemble of n particles, i.e. approx-
imations of the form

π ≈ 1

n

n∑
i=1

δX(i) =: π̃, (1)

where X(i) stands for the location of the ith particle and δx denotes the Dirac measure centred
at x ∈ E. Usually, the particles are moved according to some (more often than not stochastic)
dynamics, judiciously crafted in order for the empirical measure π̃t := 1

n

∑n
i=1 δX(i)

t
to approach

π when t reaches a terminal value (finite or infinite). This methodology has been particularly
influential in statistical inference of hidden-state Markov models (stochastic filtering or sequential
Monte Carlo, see for instance [72], [25] and references therein). Ensemble based methods have also
been employed in the contexts of optimisation [70, 73], molecular dynamics [77], Markov chain Monte
Carlo [52, 64], or variational Bayesian inference [57]. Let us also mention the works [2] and [40],
combining different aspects of various sampling strategies. The increasing availability of parallel-
processing computational architectures has further encouraged the development and analysis of
similar methodologies.
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From an abstract perspective, many of the aforementioned algorithms targeting a probability
measure π on some state space E naturally produce probability measures π̄ on the product space
Ē =

∏n
i=1Ei, where Ei is an identical copy of E, standing for the state space of the ith particle.

Denoting by Pi : P(Ē) → P(Ei) the mappings that send probability measures on Ē to their
marginals on Ei, one then obtains the measure

1

n

n∑
i=1

Pi(π̄) (2)

as an approximation for π. Clearly, the map

Π : P(Ē)→ P(E), π̄ 7→ 1

n

n∑
i=1

Pi(π̄) (3)

is far from injective since Π(π̄) only depends on the marginals of π̄. This viewpoint shows that there
is a considerable flexibility when generating the joint measure π̄, immediately suggesting fruitful
connections to the theory of couplings of probability measures [56, 82] prominently encountered
for instance in relation to optimal transport problems [84, 86] or decay estimates in Wasserstein
distances (see for instance [30]). Since in applications Π(π̄) is only an approximation of the target
measure of interest, the freedom to design appropriate couplings can be used to suppress bias,
variance and discretisation errors. This general idea has proved to be very versatile, leading to
powerful simulation techniques such as multilevel Monte Carlo [36], coupling from the past [71] and
antithetic variates [47, Section 9.2].

1.1. Couplings and Markov Chain Monte Carlo

In this paper we focus on coupling techniques in the context of Markov chain Monte Carlo simula-
tions. Assume that we are interested in computing the expectation

Eπf =

ˆ
E
fdπ (4)

of a given test function (henceforth called observable) f : E → R with respect to some probability
measure π on E. As approximations relying on quadratures tend to be computationally infeasible
in high dimensions, a standard approach is to construct a Markov process (Xt)t≥0 on E such that

lim
T→∞

1

T

ˆ T

0
f(Xs) ds =

ˆ
E
fdπ, (5)

i.e. the process (Xt)t≥0 is supposed to be ergodic with respect to π. More generally, one often
constructs a Markov process (X̄t)t≥0 on an extended state space Ē, ergodic with respect to a
measure π̄ that has π as its marginal,

ˆ
π̄(x, y) dy = π(x), (6)

where (x, y) ∈ Ē and x ∈ E. This idea is used for instance in Hamiltonian Monte Carlo [65] or
sampling schemes based on underdamped Langevin dynamics [53, Chapter 2]. We also refer to the
introduction in [28] for a more general perspective. In this work we take this approach further, in
the sense that we consider extended measures π̄ that have fixed marginals with respect to (multiple)
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complimentary subspaces of Ē. Immediately, this viewpoint suggests fruitful connections to theory
of optimal (multimarginal) transportation.

To explain our approach, let us consider n identical copies of E, (Xt)t≥0 and π, denoted by Ei,
(Xi

t)t≥0 and πi, for i ∈ {1, . . . , n}. Our main object of study is the class of Markovian couplings
(X̄t)t≥0 of

{
(Xi

t)t≥0 : i ∈ {1, . . . , n}
}

on the product space Ē =
∏n
i=1Ei that obey certain mild

regularity assumptions. In particular, we characterise those couplings in terms of their infinitesimal
generators in Section 2 (see Proposition 8). One of the recurring themes of this work is the use
of the latter in the analysis of coupled processes. From the coupling property of (X̄t)t≥0 it follows
immediately that if this process is ergodic, then its invariant measure (denoted by π̄) is a coupling
of the n copies of π.

For an observable f ∈ L1(π), we can define the extended observable F : Ē → R by

F (x1, . . . , xn) =
1

n

n∑
i=1

f(xi). (7)

From (5) it is then immediate that

lim
T→∞

1

T

ˆ T

0
F (X̄t) dt =

ˆ
E
f dπ, (8)

i.e. the coupled process (X̄t)t≥0 in conjunction with the observable (7) provides a valid sampling
scheme. Let us remark that the framework we develop in Section 2 accommodates the case when
the spaces Ei, the processes (Xi

t)t≥0 and the measures πi are not identical, allowing for considerable
flexibility in the construction of coupled samplers.

The study of observables of the form (7) provides a compelling dual perspective on the ‘sum of
marginals’ operator (3). Denoting by Bb(E) the space of bounded measureable functions we can
consider the ‘extension operator’

Π∗ : Bb(E)→ Bb(Ē), f 7→ 1

n

n∑
i=1

fi, (9)

provided by (7). For π̄ ∈ P(Ē) and f ∈ Bb(E) we clearly have (Ππ̄)(f) = π̄(Π∗f), showing
that understanding the class of observables given by (7) is sufficient for analysing the properties
of measures of the form (2). This idea features in particular in Section 6 in the analysis of the
exponential convergence to equilibrium for coupled processes.

Clearly, it is desirable to choose the coupling in such a way that the convergence in (8) is as fast as
possible. Reasonable criteria involve the asymptotic variance (related to appropriate central limit
theorems) and the spectral gap (related to the speed of convergence to equilbrium), both of which
will be addressed in the present paper. We refer the reader to [28, Section 1] for a more detailed
discussion of these quantities.

Similar constructions to ours have been considered in the literature, in particular in a discrete
time setting. In [34], the authors construct coupled Gibbs samplers using a very related rationale
(see also [41] and [63]). Coupled Metropolis-Hastings samplers have been put forward in [20]. The
work [21] provides a theoretical framework that is however is quite different from the one developed
in the present paper. Further algorithmic ideas related to coupled samplers can also be found in
[50] and [75].

1.2. Overview of the main results by means of a simple example

In this section we present our main findings informally by means of a very simple example, point-
ing to the exact statements in the forthcoming sections. Let us stress that our results hold in
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much greater generality, in particular also including the recently fashionable piecewise deterministic
Markov processes (PDMPs).

Let us consider n = 2 particles (the locations of which are denoted by Xt and Yt) moving each in
one dimension according to the overdamped Langevin dynamics defined by the SDEs

dXt = −V ′(Xt) dt+
√

2 dBx
t , (10a)

dYt = −V ′(Yt) dt+
√

2 dBy
t , (10b)

where V ∈ C∞(R) is a fixed potential such that

Z :=

ˆ
R
e−V dx <∞, (11)

and (Bx
t )t≥0, (By

t )t≥0 denote standard one-dimensional Brownian motions. As is well-known, each
of these processes considered separately is ergodic with respect to π = 1

Z e
−V dx, i.e. (5) holds for

an appropriate class of observables. Note that we have deliberately refrained from stating that the
Brownian motions (Bx

t )t≥0 and (By
t )t≥0 are independent. Indeed, notwithstanding any dependence

between these, it is immediate that (8) holds for the extended observable F (x, y) = 1
2(f(x) + f(y)),

as defined in (7). One of the main objectives of our analysis is to find couplings between (Bx
t )t≥0

and (By
t )t≥0 such that the induced joint process (Xt, Yt)t≥0 has favourable properties, in terms

of the asymptotic variance associated to (8) as well as in terms of convergence to equilibrium of
Π(π̄t), where π̄t denotes the joint law of (Xt, Yt) and Π has been defined in (3). The dependence
between (Bx

t )t≥0 and (By
t )t≥0 can be conveniently encoded in a suitable matrix-valued function

G : R2 → R2×2, writing

d

(
Xt

Yt

)
=

(
−V ′(Xt)
−V ′(Yt)

)
dt+

√
2G(Xt, Yt)

(
dW x

t

dW y
t

)
, (12)

for two independent Brownian motions (W x
t )t≥0 and (W y

t )t≥0. In this sense, the optimisation
problem alluded to above is naturally posed over an appropriate set of matrix-valued functions.

In Section 2 we introduce the general framework, leading to a characterisation of possible couplings
in terms of infinitesimal generators of the dynamics. In the present example, the generators of the
one-particle dynamics are given by

Lx = −V ′(x)∂x + ∂2
x, Ly = −V ′(y)∂y + ∂2

y . (13)

The generators of possible couplings (Xt, Yt)t≥0 turn out to be of the form

L̄Γ := Lx + Ly + Γ, Γ = 2α∂x∂y, (14)

where α : R2 → [−1, 1] is a function with suitable regularity properties. The connection between α
and G will be made precise in Section 3. We use the term ‘coupling operator’ when referring to Γ
and denote the set of such operators by G. Note that Γ as defined in (14) vanishes on functions that
depend either only on x or only on y. In Proposition 8 we will see that this property essentially
characterises coupling operators in general. As it turns out (see the discussion in Section 2.3),
not every coupling of ergodic Markov processes is such that the joint process is ergodic. Hence,
we introduce the subset G0 ⊂ G of ergodic coupling operators that do preserve ergodicity. In the
present example, L̄Γ is elliptic whenever −1 < α < 1 pointwise and therefore the corresponding
coupling operators are ergodic. Intuitively, the nonergodic coupling operators in G \ G0 can hence
be thought of as lying ‘at the boundary’ of G0. Although we have not been successful in proving a
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rigorous version of this statement in a general context, the reader is encouraged to keep this picture
in mind.

On G0 we can consider the map Γ 7→ π̄Γ, where π̄Γ stands for the unique invariant measure
associated with L̄Γ. It is immediately clear from the construction that any π̄Γ arising in this way is
a coupling of π to itself (i.e. π̄Γ has marginal π in both directions). We argue in Section 4 that a
wide range of optimisation problems in our context can be cast in the following form, very closely
linked to the theory of optimal transportation,

min
Γ∈G0

ˆ
Ē
cdπ̄Γ, (15)

where c is an appropriate cost function. Indeed, we show in Section 4.1 that the task of optimising
the asymptotic variance of a coupled process with respect to a given observable is equivalent to (15),
for a cost function that is constructed from the solution of a related Poisson equation. Addressing
the problem (15), we first note that the dependence Γ 7→

´
Ē cdπ̄Γ is highly nonlinear, in particular,

for Γ ∈ G0 and λ ∈ [0, 1], the mapping λ 7→
´
Ē cdπ̄λΓ generally exhibits many local minima and

maxima1. Nevertheless, we find that under suitable conditions the function Γ 7→
´
Ē cdπ̄Γ does not

attain its extrema on interior points. This is the main result of Section 4.2 and is stated rigorously
in Theorem 47. In the example under consideration, this implies that optimal couplings necessarily
satisfy ‖α‖∞ = 1, leading to singular (i.e. degenerately elliptic) generators L̄Γ. This conclusion is
interesting in two respects: Firstly, it complements standard results from optimal transport theory
showing that optimal couplings are typically singular in a certain sense. We stress, however, that
the problem (15) is genuinely different from problems occurring in optimal transport theory, and
that our proof uses fundamentally different techniques. Secondly, this result supports the folklore
that optimal MCMC samplers use the least amount of noise necessary to guarantee their ergodicity.

While the results from Section 4 indicate the possible locations of optimal coupling operators Γ in
the set G, they do not help to actually find them in practice. In Section 5 we address this problem
by considering small perturbations around the trivial coupling 0 ∈ G corresponding to independent
Brownian motions. This leads to a much more tractable optimisation problem that can be solved
explicitly in concrete examples and gives promising results in our numerical experiments. In the
present example, ‘mirror coupling’ (Bx

t = −By
t ) turns out to be optimal in terms of reducing

the asymptotic variance of monotone observables, in the sense of the optimisation problem just
referred to. However, for different observables (perhaps exhibiting other types of symmetries) more
intricate coupling strategies turn out to be advisable. We wish to stress that those observables are
of particular relevance for the quantification of uncertainty in a Bayesian framework, for instance
in the computation of the variance or related quantities of a posterior distribution.

In Section 6 we analyse the rate of convergence to equilibrium for coupled processes. As we
will see, the former can be characterised in terms of an inequality of Poincaré type that is in turn
related to an appropriate Hilbert space constructed in terms of the coupling. Applied to the present
example, this result shows that the rate of convergence can be improved relative to the one-particle
dynamics if the potential V is symmetric, i.e. V (x) = V (−x). In general, the speed of convergence
to equilibrium can also be slower, in the sense that there might appear a constant C > 1 in front
of the exponential decay estimate. We leave a more detailed exploration of this phenomenon for
future study.

The structure of the paper is as follows: In Section 2, we introduce our framework in a general
setting. In particular, we fix the notation (Section 2.1), characterise coupled processes in terms
of their generators (Section 2.2), discuss ergodic properties (Section 2.3) and provide a means of

1 This claim is made assuming that λΓ ∈ G0 for all λ ∈ [0, 1].
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construction coupling operators given the generators of the marginal processes (Section 2.4). In
Section 3, we illustrate our theory with concrete examples, namely diffusion processes overdamped
Langevin dynamics (Section 3.1), underdamped Langevin dynamics (Section 3.2), as well as the
zigzag process (Section 3.3), representing the class of piecewise deterministic Markov processes.
In Section 4.1 we derive a central theorem for coupled processes. The ensuing expression for the
asymptotic variance is connected to the theory of optimal transportation, as exhibited and analysed
in Section 4.2. In Section 5 we take a perturbative approach towards the solutions of the afore-
mentioned optimal transport problems and exemplify our results in the context of the examples
presented in Section 3. Finally, in Section 6 we analyse the convergence of coupled processes to
equilibrium relying on a suitable functional inequality of Poincaré type. The appendix comprises
additional material required for some of the proofs throughout the article.

2. Coupled processes and coupling operators

This section is devoted to the interplay between couplings of Markov processes and their infinitesimal
generators. We start by specifying the setting and notations.

2.1. Preliminaries, notation and setting

2.1.1. Feller semigroups

For a given locally compact Polish space E we will denote the space of bounded, Borel measurable
functions by Bb(E), the space of bounded continuous functions by Cb(E), and the space of continuous
functions vanishing at infinity2 by C0(E). The space of probability measures on E (equipped with
the Borel σ-algebra B(E)) will be denoted by P(E). All of theses spaces become Banach spaces
when equipped with the supremum norm, denoted by ‖ · ‖∞. An E-valued Markov process (Xt)t≥0

induces a semigroup of linear operators (St)t≥0 on Bb(E) via

(Stf)(x) = E[f(Xt)|X0 = x], f ∈ Bb(E), x ∈ E. (16)

Since the terminology varies slightly across the literature, we next give the definition of Feller
processes used in this paper, mostly adopting the notations and conventions from [13, Chapter 1].
For more details we furthermore refer to [44, Chapter 17].

Definition 1 (Feller processes). A Markov process (Xt)t≥0 satisfies the Feller property if the fol-
lowing hold for the corresponding semigroup (St)t≥0:

1. (St)t≥0 leaves C0(E) invariant, i.e. Stf ∈ C0(E) for all f ∈ C0(E) and t ≥ 0.

2. (St)t≥0 is strongly continuous on C0(E), i.e.

‖Stf − f‖∞
t→0−−→ 0 (17)

for all f ∈ C0(E).

Provided that (St)t≥0 is a Feller semigroup as specified above, we define its generator (L,D(L))
in the usual way [31][Chapter 2]. Throughout this paper, we will assume for convenience that the
state space E has a differential structure such that the space C∞c (E) of compactly supported smooth
functions is meaningfully defined. We can then make the following assumption on the domain of
the generator L:

2Recall that a function f : Ei → R vanishes at infinity if for all ε > 0 there exists a compact set K ⊂ Ei such that
|f(x)| ≤ ε for all x ∈ Ei \K.
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Assumption 1. All considered Feller processes are rich3, i.e. C∞c (E) ⊂ D(L).

The state spaces encountered in the examples in Section 3 naturally admit differentiable structures
and the corresponding generators fulfil Assumption 1. Let us remark, however, that our framework
can be extended to more general scenarios (including for instance infinite dimensional examples),
replacing C∞c (E) by suitable function spaces adapted to the particular setting.

Remark 2. Clearly, C0(E) does not contain constant functions (apart from the zero function) if E
is not compact. In preparation for Definition 6, we mention that D(L) can naturally be extended
to a subset of Cb(E) by endowing the latter with the topology of uniform convergence on compact
subsets of E. Following [78] (see also [43, Section 4.8]), the extended generator (L̃,D(L̃)) can then
be defined by

D(L̃) =

{
f ∈ Cb(E) : lim

t→0

Stf − f
t

exists uniformly on compact sets

}
, (18a)

L̃f = lim
t→0

Stf − f
t

, f ∈ D(L̃). (18b)

Since (St)t≥0 is conservative4 we immediately see that 1 ∈ D(L̃) and L̃1 = 0, i.e. L̃ vanishes
on constant functions. Moreover, (L̃,D(L̃)) is an extension of (L,D(L)), i.e. D(L) ⊂ D(L̃) and
L̃|D(L) = L. Henceforth we will thus drop the tilde when no confusion is possible.

2.1.2. Product spaces

We will be dealing with a collection of locally compact Polish spaces Ei, indexed by i ∈ {1, . . . , n},
and denote their cartesian product by Ē := E1× . . .×En. For f ∈ Bb(Ei), it is of course understood
that also f ∈ Bb(Ē), then depending only on the coordinate xi in x̄ ≡ (x1, . . . , xn). To a given
function f ∈ C∞c (Ei) or f ∈ C0(Ei), we will also associate the canonical element in Bb(Ē), but wish
to emphasize that clearly f does not in general have compact support or does not vanish at infinity
when considered as a function on Ē. Frequently, the spaces Ei will be identical copies of each other,
i.e. Ē = En. Given f ∈ Bb(E), we will then write fi ∈ Bb(Ē) for the function given by

fi(x1, . . . , xn) = f(xi), (x1, . . . , xn) ∈ Ē. (19)

Sums of unbounded operators are defined in the usual way: For two operators (A,D(A)) and
(B,D(B)) defined on the same Banach space X (i.e. D(A) ⊂ X and D(B) ⊂ X), their sum is
defined via

(A+B)f := Af +Bf, f ∈ D(A+B) := D(A) ∩ D(B), (20)

see for instance [31, Chapter III]. In the case when (A,D(A)) and (B,D(B)) are defined on two
distinct spaces Bb(Ei) and Bb(Ej), i 6= j, (i.e. D(A) ⊂ Bb(Ei) and D(B) ⊂ Bb(Ej)), their sum is
defined as

A+B := A⊗ I + I ⊗B, D(A+B) := D(A)⊗̂D(B), (21)

where ⊗̂ denotes the canonical topological tensor product on Bb(Ei ×Ej) (see [1] and [4, A-I 3.7]).

3We adopt this terminology following for instance [48, Section 1.5] and references therein.
4Conservativeness of the semigroup (St)t≥0 means that S11 = 1 for all t ≥ 0, encoding the conservation of total

probability mass.
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2.2. Coupled processes

Assume that for i ∈ {1, . . . , n}, we are given locally compact Polish spaces Ei, representing the state
spaces of n distinct particles. Furthermore, for i ∈ {1, . . . , n}, let us fix Feller semigroups (Sit)t≥0

on Ei with generators (Li,D(Li)) and associated Feller processes (Xi
t)t≥0 on appropriate stochastic

bases (Ωi,Pi, (F it )t≥0), representing the dynamics of those particles (in the following these processes
will be referred to as the ‘one-particle dynamics’). Let us also assume that the spaces C∞c (Ei) are
cores for the semigroups (Sit)t≥0.

Remark 3. By Watanabe’s Theorem (see for instance [44, Proposition 17.9]), C∞c (Ei) is a core for
Li if it is dense in D(Li) and invariant under (Sit)t≥0. It is possible to extend our framework by
exchanging C∞c (Ei) for other cores, say Di, as long as the first condition in Defintion 6 is altered
accordingly.

Consider now a Feller process (X̄t)t≥0 on the product space Ē := E1 × . . . × En, together with
its associated semigroup (S̄t)t≥0 on Bb(Ē) and generator (L̄,D(L̄)) in C0(Ē). We will denote the
Ei-valued coordinate processes of (X̄t)t≥0 by (X̄i

t)t≥0.

Definition 4 (Feller couplings). The process (X̄t)t≥0 is called a Feller coupling of the processes
(Xi

t)t≥0, if its marginals are given by these processes, i.e. if for all i ∈ {1, . . . , n}, the processes
(X̄i

t)t≥0 and (Xi
t)t≥0 induce the same law on the space of càdlàg functions D([0,∞), Ei)

5.

Our aim in this section is to characterise the infinitesimal generators of such coupled processes.

Remark 5. We are making the following two assumptions when considering the class of processes
described above. Firstly, we assume certain continuity properties of the process (X̄t)t≥0, encoded
mainly in the fact that the space C0(Ē) is invariant under the action of the corresponding semigroup
(see for instance [13, Lemma 1.4] for more details). Restricting our attention to the class of Feller
processes allows us to use the theory of strongly continuous semigroups on Banach spaces [31] for
the development of the theory in this section. In examples and applications however (see Sections
3 and 5), we will relax this assumption a bit, allowing for more general processes.

Secondly, we consider processes (X̄t)t≥0 that are Markovian. Obviously there are many non-
Markovian couplings of the underlying processes (Xi

t)t≥0 and indeed those might be of particular
interest for applications. Hence we plan to investigate the possibility of extending our framework
in this direction in a forthcoming project.

We now proceed to introduce a class of linear (unbounded) operators (Γ,D(Γ)) on Bb(Ē):

Definition 6 (Coupling operators). Let (Γ,D(Γ)) be a (possibly unbounded) linear operator on
B(Ē). Then (Γ,D(Γ)) is called a coupling operator if the following conditions are satisfied:

1. Test functions that depend on only one component of x̄ = (x1, . . . , xn) are in the kernel of Γ:

For all i ∈ {1, . . . , n} and f ∈ C∞c (Ei) it holds that f ∈ D(Γ) and

Γf = 0. (22)

2. The operator

L̄Γ :=
n∑
i=1

Li + Γ (23)

with domain D(L̄Γ) =
⊗n

i=1D(Li) ∩ D(Γ) is closable and its closure is the infinitesimal
generator of a Feller process on Ē.

5Every Feller process has a càdlàg modification, see [13, Theorem 1.19].
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The Feller semigroup corresponding to a coupling operator Γ will be referred to by (S̄Γ
t )t≥0. Fur-

thermore, the set of coupling operators will be denoted by G, i.e.

G = {Γ : D(Γ) ⊂ Bb(Ē)→ Bb(Ē) : Conditions 1 and 2 are satisfied.}.

Remark 7. We will not distinguish (notationally) between L̄Γ and its closure. Notice also that the
first condition in Definition 6 necessitates to think of Γ as an operator defined on (a subspace)
of Cb(Ē) (rather than C0(Ē)), because of C∞c (Ei) 6⊂ C0(Ē). The second condition is naturally
concerned with L̄Γ being the generator of a semigroup on C0(Ē) (and hence with the appropriate
restriction of Γ). We refer to Remark 2 for a discussion about the extended generator on Cb(Ē).

We have the following result, characterising completely the set of rich Feller couplings in terms
of the coupling operators G:

Proposition 8. For any Γ ∈ G, the Feller process generated by L̄Γ as defined in (23) is a coupling
of the processes

(
(Xi

t)t≥0, i ∈ {1, . . . n}
)
. Conversely, if (X̄t)t≥0 is a Feller coupling of the processes(

(Xi
t)t≥0, i ∈ {1, . . . n}

)
, then its generator is of the form (23), with Γ ∈ G.

Proof. Let Γ ∈ G, and consider the process (X̄t)t≥0 generated by the corresponding operator L̄Γ as
defined in (23). Let us fix i ∈ {1, . . . , n}. Clearly, C∞c (Ei) ∈ D(L̄Γ) and L̄Γf = Lif for f ∈ C∞c (Ei).
Hence, for all f ∈ C∞c (Ei), the process

f(X̄t)− f(X̄0)−
ˆ t

0
(Lif)(X̄s) ds, t ≥ 0, (24)

is a martingale with respect to the natural filtration (F X̄t )t≥0 generated by (X̄t)t≥0. From the
uniqueness of the martingale problem for the generator Li (see for instance [32, Section 4.4]) and
the fact that C∞c (Ei) is a core for Li, it follows that (X̄i

t)t≥0 has indeed the same law as (Xi
t)t≥0.

Conversely, assume that (X̄t)t≥0 is a Feller coupling of the processes
(
(Xi

t)t≥0, i ∈ {1, . . . n}
)

and

denote its generator by (L̃,D(L̃)). For fixed i ∈ {1, . . . , n}, we first argue that C∞c (Ei) ⊂ D(L̃),
referring to the domain of the extended generator defined in (18a). Indeed, this amounts to showing
that for all f ∈ C∞c (Ei) the limit

lim
t→0

1

t
(S̃tf − f) (25)

exists uniformly on compact sets. By the coupling property (Definition 4), we have that S̃tf = Sitf
for f ∈ C∞c (Ei). Therefore (and since C∞c (Ei) ⊂ D(Li) by assumption), it follows that the limit
(25) even exists uniformly on the whole of Ē.

We can now define Γ̃ := L̃−
∑n

i=1 Li on D(Γ̃) := D(L̃)∩
⊗n

i=1D(Li). It is then sufficient to show
that Γ satisfies the first condition of Definition 6. To this end, take f ∈ C∞c (Ei) in the martingale
problem for L̃ to see that

f(X̄i
t)− f(X̄i

0)−
ˆ t

0
(Lif)(X̄i

s) ds−
ˆ t

0
(Γ̃f)(X̄s) ds, t ≥ 0, (26)

is a martingale, again with respect to the natural filtration (F X̄t )t≥0 generated by (X̄t)t≥0. Since
(X̄i

t)t≥0 and (Xi
t)t≥0 are equal in law by assumption, it follows that ((X̄i

t)t≥0, (F X̄t )t≥0) is a solution
to the martingale problem for Li. Hence,

´ t
0 (Γ̃f)(X̄s)ds has to be a martingale as well. Since

this process is of finite variation (and the initial condition for the process (X̄t)t≥0 can be chosen
arbitrarily), this implies Γ̃f = 0.
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Remark 9. Similar approaches, describing couplings in terms of coupling operators, are known from
the literature. See for instance [17, Chapter 2, Definition 2.7] and references therein. The exact
result of Proposition 8 and its proof using martingale problems seems to be new and in particular
relevant for Conjecture 2.18 and Open Problem 2.19 in [17].

Example 10. Independent (or trivial) coupling: The zero operator Γ = 0 is always in G, as the
conditions of Definition 6 clearly hold. Indeed, consider the operator

L̄0 :=

n∑
i=1

Li (27)

on the domain D(L̄0) :=
⊕̂

iD(Li). It is straightforward (see for instance [4, A-I 3.7]) to show that
L̄0 is the generator of a Feller semigroup (S̄0

t )t≥0 given by

S̄0
t f =

(
n∏
i=1

Sit

)
f, f ∈ Bb(Ē), t ≥ 0, (28)

and that the associated Feller process is just (X̄0
t )t≥0 = (X1

t , . . . , X
n
t )t≥0, i.e. it is obtained from

independent copies of the underlying processes.

Let us briefly discuss some of the implications of the conditions in Definition 6. As can be seen
from the proof of Proposition 8, the first condition is instrumental in guaranteeing that the coupled
process (X̄t)t≥0 has the correct marginals. To put the second condition into context, we remark that
generators of Feller semigroups can be characterised by means of the Hille-Yosida-Ray theorem in
terms of the positive maximum principle (see [13, Lemma 1.28] and [13, Theorem 1.30]). As we will
see in Examples (Section 3), the latter often restricts the ‘size’ of coupling operators, so that the
set G usually turns out to be ‘bounded’ in a certain sense. Let us close this section by mentioning
the following conjecture:

Conjecture 11. The set G is convex.

Resolving the above conjecture would shed further light on the structure of G, especially in
connection with the results obtained in Section 4.

2.3. Ergodicity and regularity of couplings

From here on, let us make the following assumption, natural in the context of MCMC samplers:

Assumption 2. The underlying one-particle processes (Xi
t)t≥0 are ergodic, i.e. for every i ∈

{1, . . . , n} there exists a unique probability measure πi ∈ P(Ei) on Ei such thatˆ
Ei

(Lif) dπi = 0, f ∈ D(Li), (29)

and, furthermore,

lim
T→∞

1

T

ˆ T

0
f(Xi

t) dt =

ˆ
Ei

f dπi, f ∈ Cb(Ei). (30)

Following up on Example (10), we see that the semigroup (S̄0
t )t≥0 as given in (28) with generator

L̄0 as defined in (27) is ergodic with respect to the product measure

π̄0 :=

n⊗
i=1

πi (31)

10



on Ē. Unfortunately, it turns out that not all coupling operators Γ ∈ G induce ergodic coupled
processes, even under the Assumption 2 (for an example, see [55, Section 3.1]). We therefore make
the following definition:

Definition 12. Ergodic couplings: A coupling operator Γ ∈ G is called ergodic, if the Feller process
generated by L̄Γ is ergodic. The corresponding subset of ergodic coupling operators will be denoted
by G0. The unique invariant measure associated to Γ ∈ G0 will be denoted by π̄Γ.

Remark 13. By construction, the measures π̄Γ are couplings of the one-particle invariant measures
(πi)

n
i=1.

Remark 14. For the analysis, ergodicity of the coupling is a crucial requirement (although with more
work it might be possible to extend some of the results to the case when ergodicity fails to hold). Let
us emphasize however that the validity of (8) does not depend on this, as only the marginal property
of the coupling is used in its derivation. Hence in practice it is harmless to use nonergodic couplings,
and in fact our results obtained in Section 4 (in particular, Theorem 47) suggest using couplings
that are at least not straightforwardly seen to be ergodic. In this case, quantities measuring the
performance of the sampler (such as the asymptotic variance corresponding to certain observables)
might be undefined or depend on the initial condition.

In general, ergodicity might fail in various ways. For instance, the process might not admit any
invariant measure at all, or convergence of ergodic averages (in the sense of (30)) might not hold.
The following result shows that the situation is simpler in our context.

Lemma 15. Let Assumption 2 be satisfied. Then the following hold:

1. Every Feller coupling admits at least one invariant measure.

2. If a Feller coupling admits a unique invariant measure, then the process is ergodic, i.e. (30)
holds.

Proof. We proceed along the lines of the proof of the Krylov-Bogolyubov theorem [22, Section 3.1].
Let νi ∈ P(Ei) be arbitrary initial conditions for the processes (Xi

t)t≥0. By ergodicity, the families
(π̃it)t≥0 of Césaro averages

π̃it(A) =
1

t

ˆ t

0

(
(Sis)

∗νi
)

(A) ds, A ∈ B(Ei),

are convergent, and therefore tight. Let (X̄t)t≥0 be a Feller coupling and denote the corresponding
Césaro averages by (˜̄πt)t≥0. For any t ≥ 0, ˜̄πt is a coupling of (π̃it)

n
i=1. Using an obvious extension

of [86, Lemma 4.4] to the multimarginal case, we see that (˜̄πt)t≥0 is tight. By Prokhorov’s theorem,
there exists a weakly converging subsequence, the limit of which is an invariant measure (as in the
proof of the Krylov-Bogolyubov theorem). This proves the first claim. Now let us assume that there
exists a unique invariant measure. Since any convergent subsequence of (˜̄πt)t≥0 has to converge to
the same limit, and the sequence is tight, the second claim follows.

By the results obtained in [45], uniqueness of the invariant measure is implied by certain regularity
properties of the process. This leads to the following convenient criterion.

Corollary 16 (Regular couplings). Let Assumption 2 be satisfied and consider a Feller coupling
(X̄t)t≥0. If the corresponding transition functions (ρt(x, ·))t≥0,x∈Ē are mutually absolutely continu-
ous (i.e. if the process is regular), then (X̄t)t≥0 is ergodic.
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The measures πi, as well as π̄Γ (for Γ ∈ G0) induce the usual Hilbert spaces L2(πi) and L2(π̄Γ)
of square-integrable functions. A crucial role will be played furthermore by the corresponding
subspaces of centred functions, defined by

L2
0(π̄Γ) = {f ∈ L2(π̄Γ) | π̄Γ(f) = 0}, (32)

and analogously for L2
0(πi). Since any Feller process has a right-continuous version, the semigroups

(S̄Γ
t )t≥0 as well as the corresponding generators (L̄Γ,D(L̄Γ)) have unique extensions to strongly

continuous semigroups on L2(π̄Γ) by Jensen’s inequality. Slightly abusing the notation, we will
denote those semigroups and their generators by the same letters. Before moving on to a somewhat
more explicit description of coupling operators, let us mention the following open question, related
to Conjecture 11:

Conjecture 17. The set G0 is convex.

2.4. A general way of constructing coupling operators

In this section we describe an approach to construct coupling operators explicitly in applications.
The particular form presented here is also theoretically important since some of the calculations in
later sections depend on it (especially the proof of Theorem 47).

As in the previous section, we assume that the marginal processes are ergodic with respect to
invariant measures πi (see Assumption 2). Furthermore, let us assume that the generators Li can
be written as

Li = −
Ki∑
k=1

(Aik)
∗Aik +Bi, (33)

where (Aik)
∗ denotes the adjoint of Aik in L2(πi), and Bi is antisymmetric in L2(πi). Clearly, this

decomposition into symmetric and antisymmetric parts is always possible, and in many cases the
operators Aik and Bi can be chosen to have convenient forms. Note however that the decomposition
(33) is not unique, since there are (infinitely) many ways of choosing the operators Aik. A particular
choice of decomposing the generators Li as in (33) hence essentially amounts to the choice of square-
roots for the symmetric parts. We remark here that naturally C∞c (Ē) ⊂ D(Aik) and C∞c (Ē) ⊂ D(Bi)
are implicitly assumed, authorising the computations in later sections. The following Lemma is
essential for the construction in this subsection:

Lemma 18. Let Aik and Bi be given as in equation (33). Then

span 1 ⊂ kerAik, span 1 ⊂ kerBi, (34)

for all i ∈ {1, . . . , n}, k ∈ {1, . . .Ki}.

Proof. See [85, Proposition 2].

We may now set

Γ =
∑

(i,j,k,l)∈J

αijkl(x1, . . . , xn)AikA
j
l (35)

for appropriate measurable functions αijkl : Ē → R and where we have introduced the set of
admissible indices

J = {(i, j, k, l) ∈ N4 : 1 ≤ i, j ≤ n, i 6= j, 1 ≤ k ≤ Ki, 1 ≤ l ≤ Kj}, (36)
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associated to the decomposition (33). Applying Lemma 18, we see immediately that the first
condition of Definition 6 is satisfied. The second condition will typically enforce certain bounds
on the functions αijkl via the positive maximum principle as well as regularity constraints if we
are interested in Feller couplings. Those properties will have to be determined according to the
particular form of the generators Li. Furthermore, whether Γ as defined in (35) belongs to G0 will
also depend on the choice of the functions αijkl.

It is not clear whether the construction presented in this section exhausts the class of coupling
operators G. We present this problem as a conjecture:

Conjecture 19. For i ∈ {1, . . . , n}, assume that we are given generators (Li,D(Li)) of ergodic
Feller semigroups. Then there exist decompositions of the form (33) and a set of functions

U = {(αijkl)(i,j,k,l)∈J : Ē → R} (37)

such that

G =

Γ =
∑

(i,j,k,l)∈J

αijklA
i
kA

j
l : αijkl ∈ U

 . (38)

In the case when the underlying processes (Xi
t)t≥0 are Rdi-valued (i.e. Ei = Rdi) and have

continuous paths almost surely, Courrège’s Theorem ([19, Theorem 0.1], see also [43, Section 4.5]
for a more recent account) provides an explicit characterisation of Feller generators. If furthermore
these processes are ergodic with respect to given invariant measures, the decomposition of their
generators into symmetric and antisymmetric part can be made explicit (see [28, Theorem 1]).
Combining these theorems, we obtain the following partial result:

Proposition 20. Let Ei = Rdi for positive integers di ∈ N and assume that the processes (Xi
t)t≥0

are ergodic and solve the Itô SDEs

dXi
t = bi(Xi

t) dt+
√

2σi(Xi
t) dW i

t , (39)

where bi ∈ C1(Rdi ,Rdi), σ ∈ C1(Rdi ,Rdi×mi), and (W i
t )t≥0 are standard mi-dimensional Brownian

motions. Then the conclusion of Conjecture 19 holds.

3. Examples of coupled processes

Here we will illustrate the framework developed in the last section with concrete examples. Through-
out we consider the task of sampling from the measure

π(dx) =
1

Z
e−V (x)dx, x ∈ Rd, (40)

where V ∈ C∞(Rd) is a potential satisfying

Z :=

ˆ
Rd
e−V (x)dx <∞. (41)

3.1. Overdamped Langevin dynamics

Our first group of examples is concerned with the overdamped Langevin dynamics [68, Section 4.5].
Let us start with the one-dimensional case, already encountered in the introduction.
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3.1.1. Two particles in one dimension

We consider n = 2 particles moving in dimension d = 1, each of them according to the dynamics

dXt = −V ′(Xt) dt+
√

2 dWt. (42)

Note that in order to precisely fit into our framework developed in the previous section, the process
(Xt)t≥0 is required to be a Feller process according to Definition 1. This property can be guaranteed
by imposing certain growth conditions on the potential V , see [51, Proposition 5.9] and [58, Theorem
5.3.2, Example 5.3.3]. However, we wish to remark that the Feller property is not crucial in practice
and dispensing with this regularity requirement still leads to perfectly well-defined couplings as will
become clear in Lemma 22 below. The generator of (42) is given by

L = −V ′(x)∂x + ∂2
x = −∂∗x∂x, (43)

where the adjoint is taken in L2(π). In particular, L can naturally be written in the form (33), with
A = ∂x and B = 0. To illustrate trivial couplings (see Example 10), consider first two independent
identical copies of (42), denoted by (Xt, Yt)t≥0, hence evolving according to the dynamics

dXt = −V ′(Xt) dt+
√

2 dW x
t , (44a)

dYt = −V ′(Yt) dt+
√

2 dW y
t , (44b)

on the product space Ē = R2. Since for now the processes (W x
t )t≥0 and (W y

t )t≥0 are supposed to
be two independent standard Brownian motions, the generator of (44) is given by

L̄0 = Lx + Ly, (45)

with Lx = −V ′(x)∂x + ∂2
x = −∂∗x∂x and Ly = −V ′(y)∂y + ∂2

y = −∂∗y∂y, in agreement with Example
10, equation (27). The invariant measure of (44) is given by the product

π̄0 = πx ⊗ πy =
1

Z2
e−(V (x)+V (y))dxdy. (46)

Now let us consider nontrivial couplings. Following Section 2.4, we may set

Γ = 2α(x, y)∂x∂y, (47)

for an appropriate measurable function α : R2 → R (we have inserted a factor of 2 for convenience).
According to Proposition 20, the set of operators of the form (47) exhausts the set of coupling
operators G. Clearly, the first condition of Definition 6 is satisfied for this set of operators (this is
already guaranteed by using the construction from Section 2.4). The second condition enforces

− 1 ≤ α(x, y) ≤ 1, for all x, y ∈ R. (48)

Indeed, observe that
L̄Γ = L̄0 + Γ = ∇zU(z) · ∇z +Q(z) : ∇z∇z, (49)

where z = (x, y), U(z) = U(x, y) = V (x) + V (y),

Q(z) = Q(x, y) =

(
1 α(x, y)

α(x, y) 1

)
, (50)

and where : denotes the Frobenius inner product of matrices. According to Courrège’s theorem, L̄Γ

satisfies the positive maximum principle (required by the Hille-Yosida-Ray Theorem) only if Q(z)
is nonnegative definite for every z ∈ R2 . From this, we immediately deduce the constraint (48).
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Remark 21. We are deliberately vague about the regularity properties of α. If we restrict our
attention to Feller processes, α certainly has to be at least continuous, and there are multiple
results in the literature guaranteeing the Feller property under mild further assumptions on α, in
particular, Hölder regularity [3, 58]. For a discussion of the martingale problem for generators with
discontinuous coefficients see the recent preprint [49] and references therein. Note that even in this
simple case, it is very challenging to characterise exactly the set G as introduced in Definition 6. In
applications, however, the Feller property is not crucial. Lemma 22 below shows that measurability
of α is sufficient to ensure that a reasonable coupled process can be constructed.

Assuming that (48) is satisfied, the dynamics induced by the generator (49) are (at least formally)
given by

d

(
Xt

Yt

)
=

(
−V ′(Xt)
−V ′(Yt)

)
dt+

√
2G(Xt, Yt)

(
dW x

t

dW y
t

)
, (51)

where G(x, y)G(x, y)T = Q(x, y), for instance

G(x, y) =

(
cosβ(x, y) g(x, y) sinβ(x, y)

g(x, y) sinβ(x, y) cosβ(x, y)

)
, (52)

with β(x, y) = 1
2 arcsin |α(x, y)| and g(x, y) = sgnα(x, y). We have chosen this parametrisation since

it generalises readily to higher dimensions (see below). Let us stress that writing the dynamics in
the form (51) is vital for applications, since it enables its simulation in a straightforward manner.
The following lemma shows that the process constructed in this way is indeed a coupling in the
sense of Definition 4. Furthermore, it turns out that only minimal regularity of α is required.

Lemma 22. Let α be measurable. Then the dynamics (51) can be written as

d

(
Xt

Yt

)
=

(
−V ′(Xt)
−V ′(Yt)

)
dt+

√
2

(
dBx

t

dBy
t

)
, (53)

with two Brownian motions (Bx
t )t≥0 and (By

t )t≥0 that are in general not independent.

Proof. The claim follows from applying Lemma 72 to the components of the SDE(
dBx

t

dBy
t

)
= G

(
dW x

t

dW y
t

)
, (54)

noting that Gx := (g cosβ sinβ) and Gy := (g sinβ cosβ) indeed satisfy condition (187) with N = 1
and M = 2.

Note that the function α (equivalently the pair β and g) encodes the coupling between the
Brownian motions (Bx

t )t≥0 and (By
t )t≥0. The parameter β ∈ [0, π4 ] is related to the strength of the

coupling, whereas g ∈ {−1, 1} is related to its direction. Indeed, if β ≡ 0, then (Bx
t )t≥0 and (By

t )t≥0

are independent (‘trivial coupling’, see (44) and Example 10). If β ≡ π
4 and g ≡ 1, then Bx

t = By
t

for t ≥ 0, almost surely (‘synchronous coupling’). Likewise, if β ≡ π
4 and g ≡ −1, then Bx

t = −By
t

(‘mirror coupling’).

Remark 23 (Ergodic couplings). If the bound (48) is satisfied with strict inequalities, then the
generator (49) is elliptic, and hence, by Corollary 16, the coupled process is ergodic. Let us mention
that this condition is not necessary for ergodicity. Indeed, consider the coupling operator Γ =
−2∂x∂y, inducing the so-called ‘two-point motion’ [7], i.e. (Xt)t≥0 and (Yt)t≥0 are driven by the
same Brownian motion, only differing by their initial laws. Under mild regularity conditions (i.e.
Lipschitz continuity of the coefficients), it can be shown that (Xt, Yt)t≥0 is ergodic with respect to
π̄Γ = 1

Z e
−V (x)δx−y(dxdy), see for instance [55, Theorem 2.1].
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3.1.2. The general case

Here, we will extend the discussion from the previous section to the general case of n particles
moving in d dimensions, i.e. we are concerned with couplings of the dynamics

dXi
t = −∇V (Xi

t) dt+
√

2 dW i
t , i = 1, . . . , n, (55)

the processes (Xi
t)t≥0 being Rd-valued. If the Brownian motions (W i

t )t≥0 are independent, then
the joint process (X̄t)t≥0 = (X1

t , . . . , X
n
t )t≥0 is ergodic with respect to the product measure π̄0 =⊗n

i=1 πi on Rnd (see Example 10) and the corresponding generator is given by

L̄0 =

n∑
i=1

Li, Li = −∇V (xi) · ∇xi + ∆xi = −
d∑

k=1

(∂ik)
∗∂ik. (56)

Here, ∂ik denotes the derivative with respect to the k-th component of xi, and the adjoints are
taken in the spaces L2(πi). Clearly, the generators Li are decomposed as in (33), with Aik = ∂ik and
Bi = 0.

Remark 24. Instead of (55), we can also consider the more general dynamics

dXi
t = −Qi(Xi

t)∇V (Xi
t) dt+ (∇ ·Qi)(Xi

t) dt+ Ji∇V (Xi
t) dt+

√
2Qi(Xi

t) dW i
t , (57)

with i = 1, . . . , n, Ji ∈ Rd×dskew being skew-symmetric matrices and Qi : Rd → Rd×dsym being positive
definite matrix-valued functions, as discussed in [28, Section 2]. Note that in this case the processes
(Xi

t)t≥0 are not copies of each other, since Qi and Ji may not be the same for different particles.

To construct nontrivial couplings, we may set

Γ =

n∑
i,j=1,i 6=j

d∑
k,l=1

αijkl∂
i
k∂

j
l (58)

for appropriate6 functions αijkl : Rnd → R, following Section 2.4. Note that ∂ik∂
j
l is symmetric with

respect to the interchange of indices (i, k) ↔ (j, l), and so we may assume that αijkl = αjilk. As
in the one-dimensional case, the generator of the coupled system L̄Γ = L̄0 + Γ is a second order
differential operator which we require to be (possibly degenerately) elliptic in order for the second
condition of Definition 6 to be satisfied (again with reference to Courrège’s theorem).

To derive more easily verifiable conditions on the functions αijkl, let us introduce a matrix-valued
function (or matrix field) Q : (Rd)n → Rnd×nd as follows. Firstly, it is helpful to view the target
space of Q as Rnd×nd ≡ (Rd×d)n×n, i.e. we think of Q(x1, . . . , xn) as an n × n-matrix the entries
of which are themselves d× d matrices. In other words, Qij(x1, . . . , xn) is a d× d matrix for every
pair (i, j) ∈ {1, . . . , n}2. The matrix field Q can then be defined by

Qij(x1, . . . , xn) =

{
Id×d, i = j,

αij(x1, . . . , xn), i 6= j,
(59)

where αij(x1, . . . , xn) ∈ Rd×d denotes the matrix with entries (αijkl(x1, . . . , xn))k,l=1,...,d. Note
that Q(x1, . . . , xn) as defined in (59) is symmetric as a matrix in Rnd×nd by our assumption that
αijkl = αjilk.

6Concerning the regularity of these functions, the discussion from the previous section applies, see in particular
Remark 21.
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Remark 25. The matrices Qij can now be thought of as describing the coupling between the particles
i and j.

As in the one-dimensional case, the generator of the fully coupled system can be written as

L̄Γ = L̄0 + Γ = ∇zU(z) · ∇z +Q(z) : ∇z∇z, (60)

introducing the notation z ≡ (x1, . . . , xn) ∈ Rnd×nd and U(z) =
∑n

i=1 V (xi). To make the
connection to SDEs and arrive at a description analogous to (51), let us consider matrix fields
G : (Rd)n → (Rd×d)n×n satisfying

n∑
j=1

Gij(x1, . . . , xn)Gij(x1, . . . , xn)T = Id×d, (61)

for all i = 1, . . . , n. Here the transposition T is taken in Rd×d. Note that matrix fields of this
form give rise to the matrix fields Q : (Rd)n → Rnd×nd defined in (59) via Q = GGT (where the
transposition is taken in Rnd×nd).
Remark 26. The advantage of constructing the coupling in terms of the matrix field G is that
pointwise positive semi-definiteness of Q is automatically satisfied. A practical way to fulfil the
constraint (61) is to choose matrix fields gij : (Rd)n → Rd×d that are orthogonal pointwise, i.e.

gij(x1, . . . , xn)gij(x1, . . . , xn)T = gij(x1, . . . , xn)T gij(x1, . . . , xn) = Id×d, (62)

for all i, j = 1, . . . , n and (x1, . . . , xn) ∈ (Rd)n, as well as weights wij : (Rd)n → R satisfying

n∑
j=1

w2
ij(x1, . . . , xn) = 1, (63)

for all i = 1, . . . , n. Then, setting Gij = wijgij , condition (61) holds. Intuitively, the orthogonal
matrices gij encode the coupling between particle i and j through a rotation of the noise. The
weights wij can be interpreted as the relative coupling strengths between the particles. Observe
that both gij and wij may depend on (x1, . . . , xn), i.e. on the locations of all the particles. This
construction is a direct generalisation of (52).

Assuming GGT = Q, the dynamics associated to the generator (60) is (again, at least formally)
given by

dXi
t = −∇V (Xi

t) dt+
√

2

n∑
j=1

Gij(X
1
t , . . . , X

n
t ) dW j

t , i = 1, . . . , n, (64)

where
(

(W j
t )t≥0

)n
j=1

are assumed to be independent standard Brownian motions. As in the one-

dimensional case, we have the following lemma:

Lemma 27. There exist Rd-valued standard Brownian motions
(

(Bj
t )t≥0

)n
j=1

, not necessarily in-

dependent, such that the dynamics (64) can be written as

dXi
t = −∇V (Xi

t) dt+
√

2 dBi
t, i = 1, . . . , n. (65)

Proof. The argument is identical to the one used in the proof of Lemma 22.
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Concerning the ergodicity of couplings, we have similar findings to those of Remark 23. If the
matrix field (59) is positive definite at every point (i.e. the generator (60) is elliptic), then Corollary
16 implies that the coupled process is ergodic. An example of nonergodic couplings can be found
in [55, Section 3.1].

Example 28 (Two particles). The foregoing constructions become more explicit when considering
only n = 2 particles. To simplify the notation, we denote their positions by x ≡ x1 an y ≡ x2. The
diffusion matrices (59) reduce to

Q(x, y) =

(
Id×d α(x, y)

αT (x, y) Id×d

)
, (66)

with α : (Rd)2 → Rd×d. Using Schur complements [16, Appendix 5.5], we see that Q(x, y) is positive
semidefinite if and only if

α(x, y)Tα(x, y) ≤ Id×d, (67)

in the sense of symmetric matrices (Loewner ordering). The corresponding coupling operator is
given by

(Γf)(x, y) = 2 Tr
(
αT (x, y)∇2

xyf(x, y)
)
, f ∈ C∞c (Rd × Rd), (68)

where the matrix of mixed derivatives∇2
xyφ is given by

(
∇2
xyφ
)
ij

= (∂xi∂yjφ)ij . In order to illustrate

the construction from Remark 26, let g : (Rd × Rd) → Rd×d be a field of orthogonal matrices (see
(62)) and put

G(x, y) =

(
cosβ(x, y)Id×d sinβ(x, y)g(x, y)

sinβ(x, y)gT (x, y) cosβ(x, y)Id×d

)
, (69)

the function β : Rd×Rd → [0, π4 ] again regulating the strength of the coupling, and being associated
with the weights wij in (63). From GGT = Q it follows that α and g are connected via

α = 2 cosβ sinβ · g. (70)

3.2. Underdamped Langevin dynamics

For fixed γ > 0 (‘friction’) and symmetric positive definite M ∈ Rd×dsym (‘mass’), the dynamics

dqt = M−1pt dt, (71a)

dpt = −∇V (qt) dt− γpt dt+
√

2γ dWt, (71b)

is ergodic with respect to the measure

π =
1

Z̄
e−(V (q)+ 1

2
pTM−1p)dqdp, (q, p) ∈ R2d, (72)

Z̄ being an appropriate normalisation constant (see [68, Chapter 6] for details). The generator is
given by

L = M−1p · ∇q −∇qV (q) · ∇p + γ(−p · ∇p + ∆p) (73a)

= B −
d∑

k=1

A∗kAk, (73b)
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where T = M−1p · ∇q −∇qV (q) · ∇p is skew-symmetric in L2(π), Ak =
√
γ∂pk , and the adjoint is

taken in L2(π). To construct a coupled sampler of n processes, we may proceed as in the overdamped
case and set

Γ =

n∑
i,j=1,i 6=j

d∑
k,l=1

αijkl∂
i
pk
∂jpl , (74)

for appropriate functions αijkl : (R2d)n → R, denoting by ∂ipk the derivative with respect to the
k-th component of p of the i-th particle. Following very closely the discussion in Section 3.1, we
can introduce matrix fields Q : (R2d)n → (Rd×d)n×n and G : (R2d)n → (Rd×d)n×n satisfying (59)
and (61) (with (x1, . . . , xn) replaced by (q1, p1, . . . , qn, pn)) such that the generator of the coupled
system is given by

L̄Γ =
n∑
i=1

(
M−1pi · ∇qi −∇qV (qi) · ∇pi − γpi · ∇pi

)
+Q(z) : ∇zp∇zp , (75)

making again use of the notations z ≡ (q1, p1, . . . , qn, pn), zp ≡ (p1, . . . , pn) and such that the
associated dynamics are given by

dqit = M−1pit dt, (76a)

dpit = −∇qV (qit) dt− γpit dt+
√

2γ
n∑
j=1

Gij(q1, p1, . . . , qn, pn) dW j
t , (76b)

for i = 1, . . . , n. Also in this case, it is straightforward to see that an appropriate version of the
Lemmas 22 and 27 holds.

Remark 29. Generalising the above to the case where the particles have different frictions γi and
masses Mi or some or all of them move according to perturbed versions of underdamped Langevin
dynamics as considered in [28] is straightforward (see also Remark 24).

Example 30 (Overdamped and underdamped Langevin dynamics). It is also possible to couple dif-
ferent types of dynamics (such as overdamped and underdamped Langevin dynamics). For instance,
consider the generators

L1 = −∇V (x) · ∇x + ∆x, (77a)

L2 = M−1p · ∇q −∇qV (q) · ∇p + γ(−p · ∇p + ∆p), (77b)

as in (56) and (73a). Setting

Γ =
d∑

k,l=1

αkl(x, q, p)∂xk∂pl (78)

and following along the lines of Sections 3.1 and 3.2 will result in the coupled dynamics

dXt = −∇V (Xt) dt+
√

2dB
(1)
t , (79a)

dqt = M−1pt dt, (79b)

dpt = −∇qV (q)dt− γpt dt+
√

2γ dB
(2)
t , (79c)

where the Brownian motions (B
(1)
t )t≥0 and (B

(2)
t )t≥0 are in general not independent (and the exact

dependence results from the choice of the functions αkl).

19



3.3. The zigzag process

In recent years, there has been a growing interest in using piecewise deterministic Markov processes
(PDMPs) [23] in the context of sampling problems. These are processes that move deterministically
between random events, usually along the trajectories of an ODE. At those events, a random
transition (e.g. a ‘jump’) occurs. Both the deterministic dynamics as well as the random transitions
can be chosen with a great deal of flexibility, resulting in a range of possible PDMP algorithms.
Let us mention here the bouncy particle sampler (BPS) [15], the zigzag sampler [10], randomised
Hamiltonian Monte Carlo [14], and event-chain Monte Carlo techniques [60, 61]. The recent papers
[33] and [83] provide good overviews in a general framework.

The objective of this section is to show how the framework from Section 2 can be employed
in the construction of coupled samplers from piecewise deterministic Markov processes, using the
example of the zigzag process. For ease of exposition, we furthermore restrict our attention to the
one-dimensional case. The treatment here follows [10] and [11] in style and notation.

The state space under consideration is E = R×{−1,+1}, and the generator of the zigzag process
reads

Lf(x, θ) = θ∂xf(x, θ) + λ(x, θ) (f(x,−θ)− f(x, θ)) , f ∈ C∞c (E), (80)

where the switching rate λ is given by

λ(x, θ) = max(0, θV ′(x)) + γ(x). (81)

Here, γ : R→ R≥0 is a nonnegative continuous function, called the excess switching rate. Roughly
speaking, the zigzag process moves along straight lines in the direction determined by θ ∈ {−1, 1}.
At random times a switch occurs, i.e. θ is replaced by −θ. Those events are sampled according
to the switching rate λ, i.e. at a point (x, θ) ∈ E, the probability for the switch θ 7→ −θ in the
time span [t, t+ ε] is given by λ(x, t)ε+ o(ε). For more details on the construction and simulation
of zigzag processes we refer the reader to [9] an [10], as well as to [23] for more general piecewise
deterministic Markov processes. According to [9, Proposition 1] and [83, Appendix B.2], the zigzag
process satisfies the Feller property; for more general piecewise deterministic Markov processes this
topic has been studied in [24, see Theorem 27.6]. The measure

π =
1

2Z
e−V (x)dx⊗ (δ−1 + δ+1) (82)

is invariant, and, under some additional assumptions7, ergodic. The generator (80) can be decom-
posed in the form

L = −A∗A+B, (83)

where

A =

(
1

4
|V ′|+ 1

2
γ

)1/2

(R− 1), B = θ∂x +
1

2
θV ′(R− 1), (84)

and the ‘flip operator’ R is given by

(Rf)(x, θ) = f(x,−θ), f ∈ C∞c (Ē). (85)

A short calculation shows that indeed B is antisymmetric in L2(π), whereas A is symmetric.

7See [9] and [11]. Let us mention in particular that ergodicity is guaranteed whenever the excess switching rate γ is
strictly positive.
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To construct a coupled sampler from two zigzag processes, let us introduce the following notation:
We consider the state space Ē = R2×{−1,+1}2, denoting its elements by (x, y, θx, θy). Furthermore,
we will make use of the flip operators

(Rxf)(x, y, θx, θy) = f(x, y,−θx, θy), (Ryf)(x, y, θx, θy) = f(x, y, θx,−θy). (86)

Following Section 2.4, let us set

Γ = α(x, y, θx, θy)(Rx − 1)(Ry − 1), (87)

for an appropriate function α : Ē → R, i.e. Γ acts as

(Γf)(x, y, θx, θy) = α(x, y, θx, θy)· (88)

· (f(x, y, θx, θy)− f(x, y,−θx, θy)− f(x, y, θx,−θy) + f(x, y,−θx,−θy))

on test functions f ∈ C∞c (Ē). Note that Γ vanishes on functions that either depend on only x
and θx or only on y and θy. The next task is to obtain bounds on α that ensure that the second
condition in Definition 6 is satisfied. To this end, let us expand

(L̄Γf)(x, y, θx, θy) = (Lx + Ly + Γ)f(x, y, θx, θy) (89a)

= θx∂xf(x, y, θx, θy) + θy∂yf(x, y, θx, θy) (89b)

− (λ(x, θx) + λ(y, θy)− α(x, y, θx, θy)) f(x, y, θx, θy) (89c)

+ (λ(x, θx)− α(x, y, θx, θy)) f(x, y,−θx, θy) (89d)

+ (λ(y, θy)− α(x, y, θx, θy)) f(x, y, θx,−θy) (89e)

+ α(x, y, θx, θy)f(x, y,−θx,−θy). (89f)

For (89) to be the generator of a Markov process (in particular, for it to satisfy the positive maximum
principle), the following inequalities have to be satified:

λ(x, θx) + λ(y, θy)− α(x, y, θx, θy) ≥ 0, (90a)

λ(x, θx)− α(x, y, θx, θy) ≥ 0, (90b)

λ(y, θy)− α(x, y, θx, θy) ≥ 0, (90c)

α(x, y, θx, θy) ≥ 0, (x, y, θx, θy) ∈ Ē. (90d)

These conditions can be interpreted as saying that the transition probabilities for the coupled piece-
wise deterministic Markov process cannot be negative. Clearly, the conditions (90) are equivalent
to

0 ≤ α(x, y, θx, θy) ≤ min (λ(x, θx), λ(y, θy)) , (x, y, θx, θy) ∈ Ē. (91)

Let us briefly comment on the dynamical behaviour that the coupling operator (88) introduces.
As can be seen from (89f), α is connected to ‘double flips’, i.e. the event that both particles
change their directions at the same time. Setting α to either the lower or the upper bound in
(91) will either discourage or encourage those double flips. As in the case of the overdamped and
underdamped Langevin dynamics, the coupling behaviour (encoded in α) is allowed to depend on
the point (x, y, θx, θy) ∈ Ē. We also remark that the process generated by L̄Γ as in (89) can be
simulated conveniently by using the methods summarised in [9, Appendix B].

Remark 31. The construction in this section can be generalised to couplings of multiple zigzag
processes in arbitrary dimensions by following a similar approach to the one taken in Section 3.1.
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4. Asymptotic variance and optimal transport

In the following we analyse the asymptotic variance associated to estimators based on coupled
processes (Section 4.1) and connect the result to the theory of optimal transportation (Section 4.2).

4.1. A central limit theorem for coupled processes

The objective of this section is to establish a central limit theorem characterising the convergence
in (8) and to find an expression for the associated asymptotic variance in terms of ergodic coupling
operators Γ ∈ G0 and invariant measures π̄Γ. In particular, our aim is to compare between estimators
based on couplings (as in (8)) and the one-particle estimators (30). Naturally, Assumption 2 is still
in force. Moreover, let us assume the following:

Assumption 3 (Invertibility of the one-particle generators). The generators Li are invertible on
L2

0(πi), i.e. for all f ∈ L2
0(πi) there exists φ ∈ D(Li) ∩ L2

0(πi) such that

− Liφ = f. (92)

It is well-known that the validity of the foregoing assumption is guaranteed by sufficiently fast
decay of the semigroups (Sit)t≥0 in L2(πi), see for instance [46]. In the following, let us fix observables
of interest fi ∈ L2

0(πi) and denote the corresponding solutions to the Poisson equations (92) by φi.
Supposing Xi

0 ∼ πi, Assumption 3 implies the central limit theorems

√
T

(
1

T

ˆ T

0
fi(X

i
t) dt− πi(fi)

)
d−−−−→

T→∞
N (0, 2σ2

fi
), (93)

where the asymptotic variances are given by

σ2
fi

= 〈fi, φi〉L2(πi), (94)

see [8, 46].
We will now establish a similar central limit theorem for the coupled process (X̄t)t≥0 induced by

ergodic coupling operators Γ ∈ G0 and associated to extended observables of the form

F =
1

n

n∑
i=1

fi. (95)

Theorem 32. Central limit theorem for coupled processes. Let Assumption 3 be satisfied and
assume that Γ ∈ G0. Furthermore, let X̄0 ∼ π̄Γ. Then

√
T

(
1

T

ˆ T

0
F (X̄t) dt− π̄Γ(F )

)
d−−−−→

T→∞
N (0, 2σ2

F ). (96)

The asymptotic variance σ2
F is given by

σ2
F =

1

n2

n∑
i=1

σ2
fi
−
ˆ
Ē
L̄0ξ dπ̄Γ, (97)

where

ξ =
1

n2

∑
i<j

φiφj , (98)

the functions (φi)
n
i=1 being the solutions to the Poisson equations (92).
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Remark 33. Note that in the case of the trivial coupling Γ = 0 (see Example 10), we have that

ˆ
Ē
L̄0ξ dπ̄0 = 0, (99)

since π̄0 is the invariant measure associated to the process generated by L̄0. Therefore in this
case, we obtain the result that the asymptotic variance σ2

F is given by the arithmetic mean of the
asymptotic variances σ2

fi
of the one-particle processes, divided by n. This result is expected, since

the computational cost of computing the evolution of the processes (Xi
t)t≥0 is likewise increased by

a factor of n.

Remark 34. Observe furthermore that ˆ
Ē
L̄Γξ dπ̄Γ = 0, (100)

hence using L̄Γ = L̄0 + Γ we can equivalently express the asymptotic variance as

σ2
F =

1

n2

n∑
i=1

σ2
fi

+

ˆ
Ē

Γξ dπ̄Γ. (101)

Proof of Theorem 32. First observe that by the fact that π̄Γ is a coupling of (πi)
n
i=1, we have that

π̄Γ(F ) = 0. The Poisson equation

− L̄ΓΦ = F, π̄Γ(Φ) = 0, (102)

has a solution given by

Φ =
1

n

n∑
i=1

φi, (103)

resting on the fact that ΓΦ = 0 by the first condition of Definition 6. Again, the condition π̄Γ(Φ) = 0
is satisfied by the coupling property of π̄Γ. Using [8, Theorem 2.1], we see that the central limit
theorem (96) holds with asymptotic variance

σ2
F = 〈F,Φ〉L2(π̄Γ). (104)

Expanding the above yields

σ2
F =

ˆ
Ē

(
1

n

n∑
i=1

fi

) 1

n

n∑
j=1

φj

dπ̄Γ =
1

n2

n∑
i=1

ˆ
Ē
fiφi dπ̄Γ +

1

n2

n∑
i,j=1
i 6=j

ˆ
Ē
fiφj dπ̄Γ

=
1

n2

n∑
i=1

σ2
fi
−
ˆ
Ē
L̄0ξ dπ̄Γ,

where in the last equation we used the fact that π̄Γ has marginal πi in the i-th coordinate, expression
(94), as well as the definition of ξ in (98).
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G0 3 Γ π̄Γ ∈ C0(π1, . . . , πn)

σ2
F (L̄Γ)

Figure 1: Relationship between ergodic coupling operators, admissible couplings between the
marginal invariant measures and the associated asymptotic variance. The diagramme
commutes, in particular, all the information relevant for computing the asymptotic vari-
ance is contained in the invariant measure.

4.2. Connections to the theory of optimal transportation

In this section we will always assume that Assumption 3 is satisfied, so that the central limit
theorems from the previous section hold. Theorem 32 then shows that, in order to reduce the
asymptotic variance, we are led to the problem of minimising the expression

ˆ
Ē

(−L̄0ξ) dπ̄Γ.

Remarkably, this expression depends on Γ through the measure π̄Γ only8. We provide a sketch
of this situation in Figure 1. Since π̄Γ has fixed marginals (i.e. they do not depend on Γ), this
task is very reminiscent of the Kantorovich problem [86, Chapter 1] appearing in the theory of
optimal transportation [84, 86]. To make this connection more precise, let us introduce the following
terminology:

Definition 35 (Admissible couplings). The set of couplings of the marginal invariant measures
(πi)

n
i=1 will be denoted by C. A coupling π̄ ∈ C is called admissible, if it arises as the invariant

measure of an ergodically coupled process, i.e. if there exists Γ ∈ G0 such that

ˆ
Ē
L̄Γf dπ̄ = 0, (106)

for all f ∈ D(L̄Γ). The set of admissible measures will be denoted by C0, or, stressing the dependence
on the marginal measures, by C0(π1, . . . , πn).

Our aim in this section can be summarised in the following form, only replacing C by the subset
C0 in the standard formulation of the Kantorovich problem:

Problem 1. For a fixed cost function c ∈ Cb(Ē), find π̄ ∈ C0 such that

π̄ ∈ arg min
π̄∈C0

ˆ
Ē
cdπ̄. (107)

8Another way of saying this is that the map Γ 7→ σ2
F factors through the map Γ 7→ π̄Γ, i.e. with respect to the

asymptotic variance, no information is lost by considering only the invariant measure of the joint process.
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Equivalently, find minimisers of the function

G0 → R, Γ 7→
ˆ
Ē
cdπ̄Γ. (108)

Remark 36. As already pointed out, setting c = −L̄0ξ, with ξ as defined in (98), is equivalent to
the problem of optimising the asymptotic variance for a particular observable. Other choices for
c might be of interest. For instance, one might aim to optimise the asymptotic variance across a
set of observables simultaneously. In this case, it seems reasonable to consider cost functions of the
form c =

∑
j cj , where cj is the cost function associated with the jth observable. Assuming that all

the particles evolve in the same state space E, another natural objective would be to maximise the
average distance of the particles at equilibrium, leading to a cost function of the type

c(x1, . . . , xn) = −
n∑

i,j=1
i 6=j

d(xi, xj), (109)

for some metric d on E. More generally, for some function g : R → R it might be worthwhile to
consider

c(x1, . . . , xn) = −
n∑

i,j=1
i 6=j

g(d(xi, xj)). (110)

A cost function of this type would be reasonable if one aims to use the empirical measure of an
ensemble of particles in order to precondition the dynamics (see [52]), in which case the particles
should neither be too close nor too far away from each other. We emphasize that since in our
framework the marginal processes are held fixed, our results are not directly applicable to the
algorithm presented in [52]. However, we expect that the results might be generalised to this
context.

Let us also remark that the assumption c ∈ Cb(Ē) is mainly for technical convenience and
both the continuity and the boundedness assumption can be weakened. Since we are interested is
situations where the process (X̄)t≥0 takes values in a compact set with high probability (i.e. the
target measures πi are concentrated in a compact set), boundedness of c is not a severe restriction.

Remark 37. Clearly, it holds that

inf
π̄∈C0

ˆ
Ē
cdπ̄ ≥ inf

π̄∈C

ˆ
Ē
cdπ̄, (111)

so the solutions to the usual optimal transport problems provide lower bounds for Problem 1.
In the Kantorovich formulation, the cost function c is often induced by a distance (for instance

c(x, y) = (d(x, y))p for n = 2, 1 ≤ p <∞), penalising couplings that put probability mass on pairs
of points (x, y) where x and y are far apart from each other (hence the name optimal transport). In
the setting of MCMC (in particular in the context of variance reduction), it is plausible to encourage
the particles to stay away from each other, leading to sample diversity and improved exploration
of the state space. In this respect, our setting bears certain similarities with the use of optimal
transport problems in functional density theory, see [18].

The set C0 depends on the generators Li. Furthermore, C0 is a strict subset of C. The support of
an ergodic invariant measure for a Markov process with continuous paths is necessarily connected,
for instance, while in general the support of a coupling is not. The following example illustrates
that C0 is indeed usually significantly smaller than C:
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Example 38 (The set C0 contains only few singular measures). Consider the setting from Section
3.1.1, i.e. two particles moving in one dimension according to overdamped Langevin dynamics. Let
us fix a coupling Γ ∈ G0 and assume that the invariant measure π̄Γ is supported on the zero set of
a smooth function H : Ē → R with nowhere vanishing gradient, i.e.

supp π̄Γ ⊆ {(x, y) ∈ Ē : H(x, y) = 0}. (112)

This implies that π̄Γ is supported on a submanifold of Ē and is hence necessarily singular with
respect to the Lebesgue measure. Frequently, optimisers of standard optimal transport problems
are of this type (see for instance [59, Theorem 1.2]). Itô’s formula implies that

H(X̄t) = H(X̄0) +

ˆ t

0
(GT∇H)(X̄s) · dWs +

ˆ t

0
(L̄ΓH)(X̄s) ds, t ≥ 0, (113)

where G is given in (52). Choosing the initial condition X̄0 ∼ π̄Γ results in H(X̄t) = H(X̄0) = 0
almost surely, for all t ≥ 0. It then follows that both of the remaining integral terms individually
have to be zero (owing to the decomposition into martingale and bounded variation part). The
quadratic variation of the martingale part is given by

ˆ t

0
w(X̄s) ds, w = (∂xH)2 + 4 cosβ sinβ · (∂xH)(∂yH) + (∂yH)2. (114)

Since the quadratic variation has be to be zero for all t ≥ 0, it follows that ∂xH = ±∂yH on supp π̄Γ.
Since H is smooth with nonvanishing gradient, it turns out that supp π̄Γ is contained in either one of
the diagonals x = y or x = −y, in fact either π̄Γ = 1

Z e
−V (x)δx−y(dxdy) or π̄Γ = 1

Z e
−V (x)δx+y(dxdy),

noting that the latter is only possible if V has the symmetry property V (x) = V (−x). We conclude
that, at least in the example considered here, C0 contains only very few singular measures.

From the theory of optimal transportation it is known that solutions of the Kantorovich problem
are typically quite singular, in the sense that they are supported on small sets (see for instance [59,
Theorem 1.2]). As Example 38 shows, these measures often do not belong to C0. The aim of this
section is to show a similar singularity property for Problem 1. Informally speaking, we will see
that under reasonable conditions, the optimisers of (108) are not attained for coupling operators in
the interior of G0. To make this statement precise, let us fix the decompositions

Li = −
Ki∑
k=1

(Aik)
∗Aik +Bi (115)

of the underlying generators (see Section 2.4) and lay the focus on coupling operators of the form
(35), denoting this set by G(A):

G(A) =

Γ =
∑

(i,j,k,l)∈J

αijklA
i
kA

j
l : αijkl : Ē → R

 ∩ G, (116)

where we recall the set J of admissible indices, defined in (36). We wish to stress however that
the distinction between G(A) and G is often obsolete (see Proposition 20). The subset of ergodic
coupling operators will similarly be denoted by G0(A). Let us now introduce the ‘tangent space’ to
G(A):

TG(A) =

 ∑
(i,j,k,l)∈J

αijklA
i
kA

j
l |αijkl ∈ C

∞
c (Ē)

 . (117)
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Remark 39. The definition of TG(A) encapsulates the first condition of Definition 6 in the sense
that elements of TG(A) vanish on functions that only depend on one variable, whereas the second
condition is not accounted for.

In order to state our main result, we need the following definition:

Definition 40 (Interior points). An operator Γ ∈ G0(A) is called an interior point, if

1. for all dΓ ∈ TG(A) there exists C > 0 such that L̄Γ + εdΓ ∈ G0(A) for all ε ∈ (−C,C),

2. the operator L̄Γ is invertible on L2
0(π̄Γ),

3. dΓL−1
Γ f ∈ C(Ē) for all dΓ ∈ TG(A) and all f ∈ C(Ē) ∩ L2

0(π̄Γ).

Remark 41. The first condition is the essence of the foregoing definition, describing the geometric
intuition of interior points. The third condition is mostly technical, since in applications L−1

Γ usually
possesses sufficient smoothing properties in order for the composition dΓL−1

Γ to preserve continuity.

Remark 42 (Lyapunov functions). It is possible and often convenient to replace the second condition
by the weaker requirement that invertibility holds on a suitable subspace VΓ of L2

0(π̄Γ). Our results
in this section will then continue to hold, provided that the cost function c satisfies c−π̄Γ(c) ∈ VΓ for
all interior points Γ. As an example, assume that there exist Lyapunov functions Ki : Ei → [1,∞)
for the one-particle dynamics, i.e.

LiKi ≤ −aiKi + bi, (118)

for suitable constants ai > 0, bi ≥ 0. Defining K̄ =
∑n

i=1Ki, it follows immediately from ΓK̄ = 0
that K̄ is a Lyapunov function for L̄Γ, independently of the coupling operator Γ. Under certain
minorisation (irreducibility) conditions (see [38], [54, Chapter 2.4]), one can show that L−1

Γ is
invertible on

VΓ =

{
f ∈ L2

0(π̄Γ) :

∥∥∥∥ fK̄
∥∥∥∥
∞
<∞

}
. (119)

See also [37, Theorem 3.2].

Example 43. In the setting of Section 3.1.1 (overdamped Langevin dynamics), it is straightforward
to see that Γ as defined in (47) satisfies condition 1 of Definition 40 if and only if −1 < α(x, y) < 1
for all (x, y) ∈ R2, i.e. if and only if the bound (48) is strict. More generally, Γ as defined in
(58) satisfies condition 1 if and only if the matrix Q as defined in (59) is (strictly) positive definite
pointwise. Those conditions are clearly equivalent to the (pointwise) ellipticity of the corresponding
generators L̄Γ. In the case of underdamped Langevin dynamics (Section 3.2), analogous statements
are valid. Similarly, couplings of zigzag processes (Section 3.3) satisfy condition 1 if and only if the
bound (91) is strictly satisfied.

For our further discussion, we will need the following derivative formula:

Proposition 44. Let Γ ∈ G0(A) be an interior point, dΓ ∈ TG(A), and consider the family of
operators L̄Γ + εdΓ ∈ G0, for ε small enough. Let the associated family of invariant measures be
denoted by π̄εΓ and fix c ∈ Cb(Ē). Then the function ε 7→

´
Ē cdπ̄εΓ is differentiable in ε = 0, and the

derivative is given by

d

dε

∣∣∣∣
ε=0

(ˆ
Ē
cdπ̄εΓ

)
= −

ˆ
Ē
c
[
L̄∗Γ
]−1

(dΓ∗1) dπ̄0
Γ, (120)

where the adjoints are taken in L2(π̄0
Γ).
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Proof. The proof can be found in Appendix B.

Remark 45. Notice that our notation entails that π̄Γ ≡ π̄0
Γ. Moreover, the right-hand side of (120)

is well defined. Indeed, by the second condition in Definition 40,
[
L̄∗Γ
]−1

is well defined on L2
0(π̄0

Γ)
and furthermore Ran dΓ∗ ⊆ L2

0(π̄0
Γ) due to

ˆ
Ē

dΓ∗f dπ̄0
Γ =

ˆ
Ē

(dΓ1)f dπ̄0
Γ = 0, f ∈ C∞c (Ē), (121)

using that dΓ1 = 0 according to Lemma 18.

For an interior point Γ ∈ G0(A) and dΓ ∈ TG(A) let us introduce the suggestive notation

d

dΓ

ˆ
Ē
c dπ̄Γ :=

d

dε

∣∣∣∣
ε=0

(ˆ
Ē
cdπ̄εΓ

)
, (122)

as well as the following terminology:

Definition 46 (Critical points). Let Γ ∈ G(A) be an interior point. Then Γ is called critical if

d

dΓ

ˆ
Ē
c dπ̄Γ = 0 (123)

for all dΓ ∈ TG(A).

In our aim to find minimisers of the function Γ 7→
´
Ē cdπ̄Γ, it is natural to seek critical points.

The following is our main result in this section:

Theorem 47. Let c ∈ Cb(Ē). Then either all interior points are critical, or no interior point is
critical.

Example 48. Let c be of the form

c(x1, . . . , xn) = g1(x1) + . . .+ gn(xn), (124)

for appropriate functions gi : Ei → R. Then, since π̄Γ is a coupling of the fixed marginals (πi)
n
i=1,

the function Γ 7→
´
Ē cdπ̄Γ =

∑n
i=1

´
Ei
gi dπi is constant, and hence all interior points are critical.

Before proceeding to the proof of the theorem, let us give a few remarks:

Remark 49. Informally, Theorem 47 states that the mapping G0(A) 3 Γ 7→
´
Ē c dπ̄Γ is either locally

constant or does not attain its extrema on interior points. In other words, if Γ 7→
´
Ē cdπ̄Γ is not

constant, then its extrema lie ‘at the boundary’ of G0(A), although we have not rigorously defined
this term, and moreover,

´
Ē cdπ̄Γ is not even well-defined for nonergodic couplings.

Remark 50. A striking consequence of Theorem 47 is that under mild conditions, independent
coupling (associated to 0 ∈ G0) of overdamped or underdamped Langevin dynamics is not optimal
for any criterion of the form

´
Ē cdπ̄Γ. Theorem 47 complements results from the theory of optimal

transportation that state that optimal couplings are generically singular in terms of their support.
Indeed, considering the example of overdamped or underdamped Langevin dynamics, the ‘boundary
of G0(A)’ consists of couplings that lead to degenerately elliptic generators that are in general not
hypoelliptic. In particular, the corresponding invariant measures are not in general absolutely
continuous with respect to the Lebesgue measure.
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Remark 51. Theorem 47 also supports the folklore that optimal Markov chain Monte Carlo samplers
use as little noise as possible to guarantee ergodicity, as degenerately elliptic operators correspond
to dynamics where noise only acts in certain directions. For example, it is by now well-documented
that nonreversible samplers outperform their reversible counterparts in various settings (see for
instance [27, 42, 67, 74]). The process of making a reversible sampler nonreversible can be thought
of informally as decreasing the ratio between random and deterministic behaviour.

Remark 52. Let us examine the function G0(A) 3 Γ 7→
´
Ē cdπ̄Γ along a ray. More precisely, fix

dΓ ∈ TG(A), set L̄ε := L̄0 + εdΓ for ε small enough, and consider the function ε 7→
´
Ē cdπ̄ε, where

(π̄ε)ε denotes the corresponding family of invariant measures. Since dΓ is relatively bounded with
respect to L̄0 in L2(π̄0), we have the following Neumann power expansion for ε small enough:

ˆ
Ē
c dπ̄ε =

ˆ
Ē
c

1 +
∞∑
j=1

(−ε)j [(dΓL̄−1
0 )∗]j

1 dπ̄0. (125)

For details, see [54, Theorem 5.2]. The factor of (−ε)j in expression (125) signals oscillatory
behaviour, and indeed it is straightforward to construct examples (for instance in the Gaussian
case), where (125) exhibits multiple local minima and maxima as a function of ε (see for instance
the graph related to linear coupling in Figure 5c below). This finding is not in contradiction with
Theorem 47. Indeed, as Theorem 47 shows, at those extrema there are directions of ascent (or
descent) in TG(A) not aligned with the considered ray and thus, those extrema turn out not to be
critical when considered in the whole of G0(A).

Let us now prove Theorem 47 and start with the following key lemma. Its significance derives
from the fact that the second statement manifestly does not depend on Γ.

Lemma 53. Let c ∈ Cb(Ē) ∩ L2
0(π̄0) and Γ ∈ G0(A) be an interior point. Then the following

conditions are equivalent:

1. The following holds for all admissible indices (i, j, k, l) ∈ J :

AikA
j
l L̄
−1
Γ (c− π̄Γ(c)) = 0. (126)

2. There exists f ∈ D(L̄0) such that both of the following hold:

a) for all admissible indices (i, j, k, l) ∈ J it holds that

AikA
j
l f = 0, (127)

b)
L̄0f = c. (128)

Proof. First assume that (126) holds for all (i, j, k, l) ∈ J . Then setting

f = L̄−1
Γ (c− π̄Γ(c))

immediately implies (127). Furthermore, from (127) and (116) it follows that L̄Γf = L̄0f , implying

L̄0f = (c− π̄Γ(c)) , (129)

as well as f ∈ D(L̄0). Equation (129) clearly implies that π̄0(c) = π̄Γ(c), and hence π̄Γ(c) = 0,
leading to (128).

The reverse implication follows similarly by first observing that (127) and (128) imply that L̄Γf =
c, and hence π̄Γ(c) = 0. Combining this with (127) shows that (126) holds.
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Proof of Theorem 47. Clearly, we can without loss of generality assume that π̄0(c) = 0. According
to Definition 46 and Proposition 44, an interior point Γ ∈ G0(A) is critical if and only ifˆ

Ē
c
[
L̄∗Γ
]−1

(dΓ∗1) dπ̄Γ = 0, (130)

for all dΓ ∈ TG(A), which is equivalent to∑
(i,j,k,l)∈J

ˆ
Ē

(
AikA

j
l L̄
−1
Γ (c− π̄Γ(c))

)
· αijkl dπ̄Γ = 0, (131)

for all (αijkl)(i,j,k,l)∈J ⊂ C∞c (Ē). The latter statement is clearly equivalent to the first statement
in Lemma 53. The result now follows by noting that the second statement in Lemma 53 does not
depend on Γ.

5. A perturbative approach for the study of the asymptotic variance

Informally speaking, Theorem 47 shows that the objective of optimising the asymptotic variance
σ2
F leads to the requirement that Γ ∈ G0(A) should be chosen to be a ‘boundary point’ (see the

discussion in Remark 49). While being an interesting theoretical result, it does not give much
guidance about how to choose a suitable coupling in practice (after all, both minima and maxima
are obtained ‘at the boundary’ of G0(A)). In this section we therefore develop a perturbative
approach, based on operators of the form

L̄εΓ = L̄0 + εdΓ, dΓ ∈ TG(A), (132)

for ε small enough. In the following, we will assume that ε ∈ I, where I ⊂ R is an appropriate
interval such that L̄εΓ ∈ G0 for all ε ∈ I. As usual, we consider observables of the form F = 1

n

∑n
i=1 fi,

for some fi ∈ L2
0(πi), and suppose that Assumption 3 is satisfied. To stress the dependence of the

asymptotic variance on the parameter ε we will write σ2
F (ε). Note that a similar setting has already

been considered in Remark 52. There, we investigated the dependence of the asymptotic variance
(or more generally, of the quantity

´
Ē cdπ̄ε) on the parameter ε. Here, we are rather interested in

the choice of the ‘direction’ dΓ ∈ TG(A), starting from the trivial (independent) coupling L̄0.
Combining the expression (97) with either (125) or (120) we see that

d

dε
σ2
F

∣∣
ε=0

=

ˆ
Ē

dΓξ dπ̄0, (133)

where ξ is given by

ξ =
1

n2

∑
i<j

φiφj , (134)

in terms of the solutions to the Poisson equations (92). The benefit of (133) is that its right-hand
side consists of expressions that are known in principle, as the measure π̄0 is given by the product
π̄0 =

⊗n
i=1 πi. It therefore serves as a starting point for finding a suitable coupling operator Γ ∈ G.

Let us summarise our approach in this section in the following form:

Problem 2. Given invariant measures πi ∈ P(Ei) and observables fi ∈ L2
0(πi), find a coupling

operator Γ ∈ G such that ˆ
Ē

Γξ dπ̄0 (135)

is minimised.
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Problem 2 can be thought of in two different ways: Firstly, it can be interpreted as a linearisation
of Problem 1. Indeed, (135) depends linearly on Γ, whereas (108) is highly nonlinear (for an
illustration of this fact, see the power expansion (125)). Another way of seeing this is by noting
the similarity between (135) and the second term appearing on the right-hand side of (101). Not
surprisingly, Problem 2 turns out to be much easier to (approximately) solve in practice. Note that
by linearity, properties similar to the one expressed in Theorem 47 hold for Problem 2 (at least
if G is convex). Choosing a coupling Γ ∈ G according to the formulation of Problem 2 is clearly
heuristic. However, we have had good results with it in numerical experiments (see below).

Secondly, when a solution of Problem 2 is available, it is reasonable in practice to only implement
a small perturbation of the independent sampler (i.e. choose ε to be small). Such a choice will not
be optimal over all couplings in G according to Theorem 47. However, it is then guaranteed that
the performance of the sampler is at least slightly improved. Let us also note that the formulation
of Problem 2 does not require the coupling to be ergodic, as opposed to the formulation of Problem
1.

The aim of this section is to analyse Problem 2 for some of the examples presented in Chapter 3
and to present some numerical experiments. To this end, let us introduce the shorthand notation

δσ2
F (Γ) :=

ˆ
Ē

Γξ dπ̄0, (136)

stressing the infinitesimal (approximate) nature of the objective in Problem 2. In the sequel, Γ will
be given in terms of a function α, belonging to a set A. To emphasize this dependence we will write
Γα. We will not impose regularity constraints on the function α (beyond measurability), so that
the operators Γα will in general not induce couplings that satisfy the Feller property (see Remark
21) and hence strictly speaking do not belong to G.

5.1. Overdamped Langevin dynamics in one dimension with two particles

Consider the setting from the example presented in Section 3.1.1. Then, (136) takes the form

δσ2
F (Γα) =

ˆ
R2

α(x, y)φ′(x)φ′(y)e−(V (x)+V (y)) dxdy, (137)

where φ is the solution to the Poisson equation

−
(
−V ′φ′ + φ′′

)
= f, π(φ) = 0, (138)

and f ∈ L2
0(π) is an observable of interest. Furthermore, Γ is given as in (47), with

α ∈ A := {α : R2 → R |αmeasurable, − 1 ≤ α ≤ 1}. (139)

Recall from Section 3.1.1 that α ∈ A induces a well-defined coupled process (Lemma 22) that
however does not satisfy the Feller property in general (further regularity assumptions would be
required). The following optimality result is immediate from an inspection of (137):

Proposition 54. Let α∗ ∈ A be given by

α∗(x, y) =

{
1 if φ′(x)φ′(y) ≤ 0,

−1 if φ′(x)φ′(y) > 0,
(140)

Then Γα∗ solves Problem 2 in the sense that δσ2
F (Γα∗) ≤ δσ2

F (Γα) for all α ∈ A.
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Remark 55. Clearly, we have ˆ
Ē

Γα∗ξ dπ̄Γ ≤ 0, (141)

for α∗ as defined in (140). We stress the difference between this expression and (137), where
we compute the same integral, but with respect to π̄0. By comparison with (101), we see that
σ2
F (Γα∗) ≤ σ2

F (0), i.e. Γα∗ always improves on independent coupling. However, we do not know
whether Γα∗ is optimal in the sense of Problem 1.

It is instructive to compare the solution of Problem 2 found in Proposition 54 to the solution of
the usual Kantorovich problem. Recall that Problem 2 can be considered to be a linearisation of
Problem 1, which in turn is related to the Kantorovich problem in the sense that the minimisation
is carried out over a smaller set of couplings (namely those couplings that are invariant measures
of coupled processes, see Definition 35). For our experiments, we choose the quadratic potential
V (x) = 1

2x
2, i.e. the task of sampling from a Gaussian measure. Furthermore, we consider the linear

observable f1(x) = x, the quadratic observable f2(x) = x2 and the ‘mixed’ observable f3(x) = x2−x.
In Figure 2, we plot the invariant measure of the coupled processes induced by (140) (left-hand
side) and compare them to the solutions of the Kantorovich problem9 (right-hand side), with the
appropriate cost function c = −L̄0ξ as given in Section 4.2. As it turns out, the solutions to
Problem 2 and the standard Kantorovich problem look remarkably similar (at least in shape). We
hence conclude that in the example considered here, Problem 2 is a good approximation of Problem
1, keeping in mind that the solution of the Kantorovich problem provides a lower bound for the
objective function of Problem 1 (see Remark 37).

The following lemma serves to examine a few test cases and gain further intuition. For conve-
nience, let us assume that f (and therefore, by elliptic regularity φ) are smooth.

Lemma 56. Let φ ∈ L2
0(π) solve the Poisson equation (138).

1. Assume that f ∈ L2
0(π) is monotonically increasing (decreasing). Then φ′ is nonnegative

(nonpositive).

2. Assume that V and f are symmetric, i.e. V (−x) = V (x) and f(−x) = f(x) for all x ∈ R.
Furthermore, let f be monotonically decreasing (increasing) on (−∞, 0]. Then φ′(x) · x ≤ 0
(φ′(x) · x ≥ 0) for all x ∈ R.

The proof can be found in Appendix C. The following two corollaries are direct consequences of
Lemma 56 and Proposition 54:

Corollary 57 (‘Mirror coupling’). In the setting from the first part of Lemma 56,

α∗ ≡ −1

solves Problem 2, in the sense that δσ2
F (Γα∗) ≤ δσ2

F (Γα) for all α ∈ A.

Corollary 58 (‘Symmetric coupling’). In the setting from the second part of Lemma 56,

α∗(x, y) =

{
1 if x · y ≤ 0,

−1 if x · y > 0,
(142)

solves Problem 2, in the sense that δσ2
F (Γα∗) ≤ δσ2

F (Γα) for all α ∈ A.

9The optimal transport map was computed using the Python library POT 0.4.0 (accessible from
https://pypi.python.org/pypi/POT/0.4.0) which is based on the algorithm proposed in [12].
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Figure 2: Comparison of invariant measures associated to solutions of Problem 2 and optimal
transport maps as solutions to the Kantorovich problem for the example of overdamped
Langevin dynamics in dimension one with quadratic potential.

Invariant measure

-5 0 5
-5

0

5
Optimal transport map

-5 0 5

5

0

-5

(a) Linear observable: f1(x) = x.
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(c) Mixed observable: f3(x) = x2 − x.



A few comments on the findings from Corollaries 57 and 58 are in order. If the observable is
monotone (Corollary 57), then it turns out that choosing the ‘mirror coupling’ dBx

t = −dBy
t in

(53) is optimal in the sense of Problem 2. This result has a clear connection to popular variance
reduction techniques such as ‘antithetic variates’ [47, Chapter 9.2], where correlations between
random variables are used to produce cancellations. In the case of symmetric observables (Corollary
58), optimal coupling in the sense of Problem 2 leads to a more sophisticated strategy: When the
two particles (the locations of which are again denoted by x and y) ‘are on the same side of the
potential’ (meaning that x ≥ 0 and y ≥ 0 or x ≤ 0 and y ≤ 0), then the Brownian motions should
be coupled according to dBx

t = −dBy
t , as in the case of monotone observables. When the particles

are on opposite sides (x ≥ 0 and y ≤ 0 or x ≤ 0 and y ≥ 0), according to Corollary 58 it is best
to switch to ‘synchronous coupling’, dBx

t = dBy
t . Intuitively this can be understood as follows:

By symmetry, the situation where x ≥ 0 and y ≤ 0 with synchronous coupling (dBx
t = dBy

t ) is
equivalent to x ≥ 0 and y ≥ 0, with mirror coupling (dBx

t = −dBy
t ). Since f is monotone on

[0,∞), this argument provides a plausible explanation for optimality by appealing to Corollary 57.
Finally, let us mention that numerical experiments show that using mirror coupling in the case of
observables of the type encountered in Corollary 58 (‘naive antithetic variates’) actually leads to a
less effective sampler in terms of the asymptotic variance (see Figure 5b).

Let us consider now the same set-up as in the numerical experiments presented in Figure 2,
i.e. we consider a Gaussian target measure (V (x) = 1

2x
2), and the observables f1(x) = x (‘linear’),

f2(x) = x2 (‘quadratic’) and f3(x) = x2−x (‘mixed’). In Figure 4, we plot the asymptotic variances
for f1, f2 and f3, associated to different coupling schemes as a function of the coupling strength β.
To be precise, the ‘Poisson’ coupling is defined by

α(x, y) =

{
2 sinβ cosβ if φ′(x)φ′(y) ≤ 0,

−2 sinβ cosβ if φ′(x)φ′(y) > 0,
(143)

φ being the solution to the Poisson equation (138) for the corresponding observable, and β ∈ [0, π4 ]
denoting the coupling strength10. For β = 0, we recover independent coupling, whereas β = π

4 leads
to the optimal coupling from Proposition 54. According to Corollaries 57 and 58, Poisson coupling
coincides with mirror coupling for f1 and with symmetric coupling for f2. To illustrate the effect of
couplings that are not tailored to the observable of interest, we also plot the asymptotic variances
associated to symmetric coupling for f1, mirror coupling for f2, and both mirror and symmetric
coupling for f3. For f3, we furthermore consider a coupling strategy that uses the derivative of the
observable instead of the derivative of the solution to the Poisson equation, specifically, the coupling
induced by

α(x, y) =

{
2 sinβ cosβ if f ′(x)f ′(y) ≤ 0,

−2 sinβ cosβ if f ′(x)f ′(y) > 0.
(144)

The motivation for this is that in applications, the solution to the Poisson equation is often hard
to obtain11, whereas the gradient of the observable is readily available. By integration by parts we
have ˆ

Rd
∇f · ∇φ dπ =

ˆ
Rd
f2 dπ ≥ 0, (145)

10For β ∈ [0, π
4

], the function 2 sinβ cos is monotone, taking values in [0, 1]. We chose this parametrisation in order
for it to be consistent with (52).

11However, often one aims to approximate the solution to the Poisson equation in order to use it as a control variate,
see for instance [26, 62, 76]. It suggests itself to use those approaches in conjunction with the coupling strategy
developed here.
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suggesting us to use ∇f as a surrogate for ∇φ (at equilibrium, the scalar product of ∇f and ∇φ is
positive on average).

In all the cases considered, the Poisson coupling turns out be the most efficient, uniformly in

the coupling strength β. The fact that the absolute value of the derivative
dσ2
F

dβ |β=0 is maximal for
Poisson coupling is precisely the content of Proposition 54, whereas the fact that the asymptotic
variance for Poisson coupling is maximal at β = 0 follows from Remark 55. It is interesting to
note the monotonity of the asymptotic variance associated to Poisson coupling with respect to the
coupling strength β; this phenomenon is not covered by our theory. Importantly, the efficiency
of a certain coupling strongly depends on the considered observable. Indeed, the mirror coupling
(which is excellent for the linear observable, see Figure 5a) leads to an increase of the asymptotic
variance for the quadratic observable (see Figure 5b). Similarly, the symmetric coupling (suited
for the quadratic observable), does not improve the performance for the linear observable (but
the performance is also not worsened). In Figure 5c, we observe that the coupling based on the
derivative of the observable (see (144)) works almost as well as the Poisson coupling, so this might
be a reasonable choice in applications, although further studies are needed. For a comment about
the minimum of the graph associated to mirror coupling for the mixed observable (see Figure 5c)
we refer to Remark 52.

5.2. Overdamped Langevin dynamics with multiple particles in arbitrary dimensions

Let us extend the discussion from the previous section to arbitrary dimensions, first considering the
case of two particles (as done in Example 28). Using the expression (68), we see that

δσ2
F (Γα) =

ˆ
Rd×Rd

(∇φ(y) · α(x, y)∇φ(x)) e−(V (x)+V (y)) dxdy, (146)

where α : Rd × Rd → Rd×d is a matrix-valued function satisfying (67), i.e.

α ∈ A :=
{
α : Rd × Rd → Rd×d measurable, α(x, y)Tα(x, y) ≤ Id×d for all x, y ∈ Rd

}
, (147)

and φ is the solution to the Poisson equation

− (−∇V · ∇+ ∆)φ = f, π(φ) = 0. (148)

Since (67) implies
|∇φ(y) · α(x, y)∇φ(x)| ≤ |∇φ(x)||∇φ(y)|, x, y ∈ R, (149)

we get the following optimality result:

Proposition 59. Assume that α∗ ∈ A is chosen such that

∇φ(y) · α∗(x, y)∇φ(x) = −|∇φ(x)||∇φ(y)|, x, y ∈ Rd. (150)

Then α∗ solves Problem 2, i.e. δσ2
F (Γα∗) ≤ δσ2

F (Γα) for all α ∈ A.

In the case when the solution φ to the Poisson equation is known it is straightforward to construct
a matrix-valued function α∗ such that both (67) and (150) are satisfied. For instance, any orthogonal
matrix trivially satisfies (67), and (150) can be dealt with by choosing an appropriate rotation or
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Figure 4: Dependence of the asymptotic variance on different coupling schemes and coupling
strengths.
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(c) Mixed observable: f3(x) = x2 − x.
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reflection. As an example let us mention the following reflection in the plane spanned by ∇φ(x)
and ∇φ(y):

α∗(x, y) =


Id×d − 2

(
∇̂φ(x)+∇̂φ(y)

)(
∇̂φ(x)+∇̂φ(y)

)T
(
∇̂φ(x)+∇̂φ(y)

)2 if ∇φ(x) 6= 0,∇φ(y) 6= 0,

∇̂φ(x) + ∇̂φ(y) 6= 0,

Id×d otherwise.

(151)

Here, ∇̂φ = ∇φ
|∇φ| is used to denote the normalised gradient of φ. As mentioned in Section 5.1,

the solution to the Poisson equation is usually hard to obtain in applications (but the popular
methodology using control variates relies on approximations thereof). Inspired by the integration

by parts formula (145), it seems reasonable to use the normalised gradient of the observable ∇̂f as

a surrogate for ∇̂φ, i.e.

αf (x, y) =


Id×d − 2

(
∇̂f(x)+∇̂f(y)

)(
∇̂f(x)+∇̂f(y)

)T
(
∇̂f(x)+∇̂f(y)

)2 if ∇f(x) 6= 0,∇f(y) 6= 0,

∇̂f(x) + ∇̂f(y) 6= 0,

Id×d otherwise.

(152)

We recall that a comparison of the couplings associated to (151) and (152) was performed in
the one-dimensional case (see Figure 5c) where αf almost achieved the same reduction of the
asymptotic variance as α∗. Based on (145) and numerical experiments we conjecture that choosing
αf guarantees an improvement in terms of the asymptotic variance for small perturbations:

Conjecture 60. Let f ∈ L2
0(π) and φ ∈ L2

0(π) be the corresponding solution to the Poisson equation
(148). Then

δσ2
F (Γα) =

ˆ
Rd×Rd

(∇φ(y) · αf (x, y)∇φ(x)) e−(V (x)+V (y)) dxdy ≤ 0. (153)

The complexity of the foregoing optimisation problems is increased substantially when considering
more than two particles. From a practical perspective, it is desirable to specify the coupling in
terms of the matrix-valued function G appearing in (64) since this formulation is needed for the
implementation of the numerical scheme. The linearised optimisation objective (Problem 2) however
is formulated in terms of the coupling operator Γ. Passing from the latter to G involves the
computationally expensive task of computing the square root of the matrix Q defined in (59). The
construction and effective implementation of optimally coupled samplers with multiple particles
therefore remains a subject for future work, but could be based on the results for the case of two
particles. To give an impression, let us outline an idea based on the notation introduced in Remark
24. It is natural to choose the orthogonal matrices gij describing the coupling between the ith and
the jth particle according to (151), i.e.

gij(x1, . . . , xn) =


Id×d − 2

(
∇̂φ(xi)+∇̂φ(xj)

)(
∇̂φ(xi)+∇̂φ(xj)

)T
(
∇̂φ(xi)+∇̂φ(xj)

)2 if ∇φ(xi) 6= 0,∇φ(xj) 6= 0,

∇̂φ(xi) + ∇̂φ(xj) 6= 0,

Id×d otherwise,

(154)
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Figure 6: Comparison between pairwise couplings with and without sorting according to |∇φ| for a
Gaussian target measure in d = 10 dimensions and with n = 10 particles.
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(a) Quadratic observable: f(x) = 1
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(b) Mixed observable: f(x) = 5|x|2 + l · x.

or, when the solution φ to the Poisson equation (or an approximation thereof) is not available,
according to (152). Since the benefit of the coupling in terms of reducing the asymptotic variance
is directly related to the value of the expression in (150), it is plausible to choose the weights wij
(see (63)) in such a way that particle xi is preferentially coupled to particle xj if |∇φ(xi)| and
|∇φ(xj)| are similar in magnitude. To make this precise, denote by σ : {1, . . . , n} → {1, . . . , n} the
permutation that orders the particles according to |∇φ|, i.e.

|∇φ(xσ(1))| ≥ |∇φ(xσ(2))| ≥ . . . ≥ |∇φ(xσ(n−1))| ≥ |∇φ(xσ(n))|. (155)

Then, denoting the coupling strength by β ∈ [0, π4 ], we can set the weights as follows:

wii = cosβ, i = 1, . . . , n,

wσ(1)σ(2) = sinβ, wσ(3)σ(4) = sinβ, . . . wσ(n−1)σ(n) = sinβ, (156)

wij = 0 otherwise.

Let us emphasize that the sorting of the particles according to |∇φ| is supposed to be performed
at every time step. We have compared this coupling strategy to simple pairwise coupling without
sorting12, i.e. replacing the second line of (156) by

w12 = sinβ, w34 = sinβ, . . . wn−1,n = sinβ, (157)

for the example of sampling a standard Gaussian measure (V = 1
2 |x|

2) in d = 10 dimensions with
n = 10 particles for the quadratic observable f1(x) = 1

2 |x|
2 and the mixed observable f2(x) =

5|x|2 + l · x, where l = (1, . . . , 1). As Figure 6 shows, the sorting strategy as detailed in (156) leads
to a smaller asymptotic variance in comparison to simple pairwise couplings.

12This is equivalent to running n/2 two-particle samplers independently in parallel.
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5.3. The zigzag process

Recall the setting from Section 3.3 and fix an observable of interest f ∈ L2
0(π̃) 13. For notational

convenience, let us introduce the shorthands

α++(x, y) := α(x, y,+1,+1), α+−(x, y) := α(x, y,+1,−1),

α−+(x, y) := α(x, y,−1,+1), α−−(x, y) := α(x, y,−1,−1).

Taking the constraint (91) into account, we will optimise over the set

A = {α : R2 × {−1, 1}2 → R |αmeasurable, 0 ≤ α ≤ min (λ(x, θx), λ(y, θy))}.

The corresponding coupling operators (see (88)) will be denoted by Γα. We have the following
lemma the proof of which can be found in Appendix C.

Lemma 61. The zigzag process satisfies

δσ2
F (Γα) =

1

4

ˆ
R2

α̃(x, y) · φ̃′(x)φ̃′(y)e−(V (x)+V (y)) dxdy,

α̃(x, y) = α++(x, y) + α−−(x, y)− α+−(x, y)− α−+(x, y), (159)

where φ̃ ∈ L2(π̃) is a solution to
− (−V ′φ̃′ + φ̃′′) = f. (160)

Remark 62. Observe the remarkable coincidence that (160) coincides with the Poisson equation
(138) for the overdamped Langevin dynamics. We employ the notation φ̃ to distinguish (160) from
the Poisson equation (207) in the whole space Ē = R2 × {−1, 1}2.

The following result is immediate from the expression (159):

Proposition 63. Let α∗ ∈ A be given by

α∗(x, y, θx, θy) =

{
min (λ(x, θx), λ(y, θy)) , if φ̃′(x)φ̃′(x)θxθy ≤ 0

0, otherwise.
(161)

Then Γα∗ solves Problem 2 in the sense that δσ2
F (Γα∗) ≤ δσ2

F (Γα) for all α ∈ A.

Remark 64. The comment from Remark 55 applies here as well.

Combining Lemma 56 with Proposition 63 immediately yields the following corollaries:

Corollary 65. In the setting from the first part of Lemma 56,

α∗(x, y, θx, θy) =

{
min (λ(x, θx), λ(y, θy)) , if θxθy ≤ 0

0, otherwise,
(162)

solves Problem 2, in the sense that δσ2
F (Γα∗) ≤ δσ2

F (Γα) for all α ∈ A.

Corollary 66. In the setting from the second part of Lemma 56,

α∗(x, y, θx, θy) =

{
min (λ(x, θx), λ(y, θy)) , if xyθxθy ≤ 0

0, otherwise,
(163)

solves Problem 2, in the sense that δσ2
F (Γα∗) ≤ δσ2

F (Γα) for all α ∈ A.

13We use the notation π̃(dx) = 1
Z
e−V (x)dx to distinguish it from the invariant measure π on the full space R×{−1, 1},

given in (82).
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The results from Corollaries 65 and 66 can be interpreted intuitively in the following way. As
already pointed out in Section 3.3, setting α(x, y, θx, θy) = min (λ(x, θx), λ(y, θy)) encourages simul-
taneous flips of the velocities θx and θy (when the particles are at locations x and y, with velocities
θx and θy), whereas the flips occur independently if α(x, y, θx, θy) = 0. The coupling associated to
(162) therefore leads to an increased probability of simultaneous flips precisely when the two parti-
cles move in opposite directions. Observe that simultaneous flips preserve the value of θxθy, while
single flips change its sign. As a consequence, the relative amount of time during which the two par-
ticles move in opposite directions is increased by the coupling associated to (162). Similarly to the
case of mirror coupling for overdamped Langevin diffusions (see the discussion following Corollary
58), it is plausible that this dynamics leads to cancellations for monotone observables in the spirit of
antithetic variates. The interpretation of Corollary 66 is analogous to the one of Corollary 58. For
illustration, we consider again the case of a quadratic potential V (x) = 1

2x
2 (i.e. a Gaussian target

measure) and a linear observable f(x) = x. The coupling is chosen according to Corollary 65, i.e.
in a suitable manner for the linear observable, modulated by a parameter β ∈ [0, 1], analogously to
(143) and (144). In Figures 9a, 9b, and 9c we plot the associated asymptotic variance, the relative
time the particles move in opposite directions, as well as the average distance between the particles.
Those graphs support the foregoing intuitive arguments. The fact that the average distance between
the particles increases with the strength of the coupling is interesting, since it suggests that the state
space can be explored more efficiently by using appropriate couplings. In Figure 9d we plot a typical
trajectory of the joint system. Comparing this graph with the optimal transport map depicted in
3a, we conclude that the solution to Problem 2 found in Proposition 63 is somewhat close to the
solution of the Kantorovich problem, but not nearly as much as the corresponding solution in the
case of overdamped Langevin dynamics. Interestingly, the aforementioned similarity is much more
pronounced in the case when the target distribution is heavy-tailed. As an example, we plotted
a typical trajectory of a mirror-coupled zigzag process targeting a Cauchy distribution in Figure
9e. We did perform numerical experiments for quadratic observables. For them, an improvement
in the asymptotic variance is hardly noticeable. Furthermore, a typical trajectory for the coupling
induced by (163) very much resembles the typical trajectories for the independent coupling. As it
seems, couplings of zigzag processes are not very efficient in the setting of Lemma 56.2. A possible
explanation is that piecewise deterministic Markov processes are more ‘rigid’ than diffusions (in fact,
by definition, they move deterministically during a considerable time span), allowing less flexibility
in terms of couplings.

6. A remark on the rate of convergence to equilibrium

In this section, we study the rate of convergence to equilibrium for coupled processes. For conve-
nience, let us assume that the spaces Ei and the operators Li are identical copies of each other.
When addressing the marginal process(es), we will usually suppress the indices and write L and E.
Furthermore, let us fix an ergodic coupling operator Γ ∈ G0 and denote as usual the corresponding
generator and semigroup by L̄Γ = L̄0 + Γ and (S̄Γ

t )t≥0 respectively. In the sequel, we will make use
of the following subspace of centred observables in L2

0(π̄Γ):

L̃2
0(π̄Γ) :=

{
F ∈ L2

0(π̄Γ)| there exists f ∈ L2
0(π) such that F =

1

n

n∑
i=1

fi

}
⊆ L2

0(π̄Γ). (164)

Clearly, the space L̃2
0(π̄Γ) comprises the observables of interest in our framework. By using the ex-

tension operator Π∗ from (9), L̃2
0(π̄Γ) can equivalently be defined via L̃2

0(π̄Γ) = Π∗L2
0(π̄Γ). The main

result of this chapter is the following characterisation of exponential convergence to equilibrium.
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Figure 8: Coupling for the zigzag process according to Corollary 65.
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Theorem 67. For Λ > 0, the following are equivalent:

1. Poincaré inequality:

〈F, F 〉L2(π̄Γ) ≤
1

Λ
〈F, (−L̄Γ)F 〉L2(π̄Γ) (165)

for all F ∈ D(L̄Γ) ∩ L̃2
0(π̄Γ).

2. Exponential decay:
‖S̄Γ

t F‖2L2(π̄Γ) ≤ e
−2Λt‖F‖2L2(π̄Γ), t ≥ 0, (166)

for all F ∈ L̃2
0(π̄Γ).

Remark 68. Theorem 67 is well known if L̃2
0(π̄Γ) is replaced by the whole space L2

0(π̄Γ), see [6,
Theorem 4.2.5]. For our purposes however, it is natural to restrict attention to the smaller space
L̃2

0(π̄Γ). In particular, by the duality (Ππ̄)(f) = π̄(Π∗f) explained in the introduction, the decay
estimate (166) implies exponential convergence of the laws (Ππ̄t)t≥0, with the same rate.

The proof of Theorem 67 relies on the following lemma:

Lemma 69. Let F ∈ L̃2
0(π̄Γ) with F = 1

n

∑n
i=1 fi, f ∈ L2

0(π). Then

S̄Γ
t F =

1

n

n∑
i=1

(Stf)i, t ≥ 0. (167)

In particular, L̃2
0(π̄Γ) is invariant under the flow of (S̄Γ

t )t≥0.

Proof. For F ∈ Cb(Ē) ∩ L̃2
0(π̄Γ) we have

(S̄Γ
t F )(x1, . . . , xn) = E[F (X̄t)|X̄0 = (x1, . . . , xn)]

=
1

n

n∑
i=1

E[f(Xi
t)|X̄0 = (x1, . . . , xn)]

=
1

n

n∑
i=1

E[f(Xi
t)|Xi

0 = xi] =
1

n

n∑
i=1

(Stf)(xi).

Between the second and the third line, we used the fact that the process (X̄t)t≥0 has (Xi
t)t≥0 as its

ith marginal, so in particular, the law of f(Xi
t) depends on the initial condition X̄0 only through

Xi
0 = xi. For arbitrary F ∈ L̃2

0(π̄Γ) the result follows by a standard density argument.

Proof of Theorem 67. The proof is verbatim the same as for the usual result. However, the fact
that L̃2

0(π̄Γ) is invariant under the flow (S̄Γ
t )t≥0 is crucial. For completeness let us sketch the proof:

Let F ∈ L̃2
0(π̄Γ) and assume that the Poincaré inequality (165) holds for some constant Λ > 0.

Then
d

dt

(
1

2
‖S̄Γ

t F‖2L2(π̄Γ)

)
= 〈S̄Γ

t F, L̄ΓS̄
Γ
t F 〉L2(π̄Γ) ≤ −Λ〈S̄Γ

t F, S̄
Γ
t F 〉L2(π̄Γ), (169)

where the last inequality uses the fact that S̄Γ
t f ∈ L̃2

0(π̄Γ) according to Lemma 69. Exponential
decay as in (166) follows by Gronwall’s Lemma. The converse direction follows by performing a
Taylor expansion of the decay estimate (166) around t = 0.
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To explain the significance of Theorem 67, let us start by writing (165) in the form

〈f, f〉L2(π) +
1

n

n∑
i,j=1
i 6=j

〈fi, fj〉L2(π̄Γ) ≤
1

Λ

〈f, (−L)f〉L2(π) +
1

n

n∑
i,j=1
i 6=j

〈fi, (−Lj)fj〉L2(π̄Γ)

 , (170)

using the marginal property of π̄Γ. Clearly, (170) deviates from the usual one-particle Poincaré
inequality by the additional terms involving summation over pairs of particles. To make this more
precise and analyse the impact of these terms, let us define the following bilinear form on L2

0(π):

⟪f, g⟫ := 〈f, g〉L2(π) +
1

n

n∑
i,j=1
i 6=j

〈fi, gj〉L2(π̄Γ), f, g ∈ L2
0(π). (171)

For F =
∑n

i=1 fi and G =
∑n

i=1 gi we have that 〈F,G〉L2(π̄Γ) = n⟪f, g⟫. Hence, ⟪·, ·⟫ is both
symmetric and nonnegative definite, but ⟪f, f⟫ = 0 is possible for f 6= 0. It is therefore natural to
define the equivalence relation

f ∼ g :⇐⇒ ⟪f − g, f − g⟫ = 0, f, g ∈ L2
0(π), (172)

and the corresponding Hilbert space
H := L2

0(π)/ ∼ . (173)

Using again the correspondence F =
∑n

i=1 fi, we see that ⟪f, f⟫ = 0 if and only if F = 0 π̄Γ-almost
surely. By ergodicity, this is also equivalent to L̄ΓF = 0, π̄Γ-almost surely. We hence see that L
respects ∼-equivalence classes, i.e. f ∼ g if and only if Lf ∼ Lg. Denoting the induced operator
on H by LH, it is then immediate each of (165) and (170) is equivalent to

⟪f, f⟫ ≤ 1

Λ
⟪f, (−LH)f⟫, f ∈ H ∩D(L). (174)

By its similarity to the one-particle Poincaré inequality, the formulation (174) is convenient for the
comparison between the spectral gaps of the underlying and the coupled dynamics.

Let us assume from now on that L is self-adjoint in L2
0(π) with discrete spectrum, with

− Lei = µiei, 0 < µ1 ≤ µ2 ≤, . . . (175)

where the eigenvectors (ei)i∈N form an orthonormal basis in L2
0(π). The optimal constant in the

one-particle Poincaré inequality is then clearly given by λ = µ1. In the study of the coupled Poincaré
inequality (174), two interesting effects might occur. Firstly, the spectrum of LH might be different
from the spectrum of L. Secondly, LH might not be symmetric with respect to ⟪·, ·⟫. Let us start
with the first point. Clearly, σ(LH) ⊆ σ(L), more precisely

σ(LH) = {λi : ⟪ei, ei⟫ 6= 0} . (176)

Example 70. Consider the dynamics

dXt = −∇V (Xt) dt+
√

2 dBt, (177a)

dYt = −∇V (Yt) dt−
√

2 dBt, (177b)

with a standard Rd-valued Brownian motion (Bt)t≥0. Let us assume that the potential V grows
sufficiently fast at infinity such that the one-particle generator L has compact resolvent and hence
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discrete spectrum in L2
0(π). Furthermore, suppose that the eigenvalues and eigenfunctions are

labelled and ordered as in (175). Let us now assume that V is even, i.e V (x) = V (−x), and that
the process is ergodic. The invariant measure is then given by

π̄Γ(dxdy) =
1

Z
e−V (x)δx+y dxdy, (178)

and the corresponding new (degenerate) scalar product in L2
0(π) turns out to be

⟪f, g⟫ =
1

Z

ˆ
Rd
f(x)g(x)e−V (x) dx (179a)

+
1

2Z

(ˆ
Rd
f(x)g(−x)e−V (x)dx+

ˆ
Rd
f(−x)g(x)e−V (x)dx

)
. (179b)

Notice that by the symmetry of V , all the eigenfunctions of L are either even or odd. Moreover,
a short calculation shows that ⟪f, f⟫ = 0 if and only if f is odd (meaning that −f(x) = f(−x)).
Using (176), we see that

σ(LH) = {λi : ei is odd} . (180)

Another short calculation shows that LH is symmetric with respect to ⟪·, ·⟫, i.e.

⟪f,LHg⟫ = ⟪LHf, g⟫, f ∈ H ∩D(L). (181)

If the first eigenfunction e1 is odd14, it therefore follows that the coupled Poincaré inequality
(170) holds with the constant Λ = µ2, showing an improved rate of convergence for the coupled
dynamics.

Example 71. Let us examine the second point, i.e. the possibility of LH not being symmetric with
respect to ⟪, ·, ·⟫. For simplicity, assume that σ(LH) = σ(L), i.e. ⟪ei, ei⟫ 6= 0 for all i ∈ N. Consider
the case when the measures π̄0 and π̄Γ have densities with respect to a common dominating measure
m (for convenience denoted by the same symbols), and suppose there exist constants c1, c2 > 0 such
that

c1π̄0(x) ≤ π̄Γ(x) ≤ c2π̄0(x), x ∈ E. (182)

This is the case precisely when the norms in L2(π̄0) and L2(π̄Γ) are equivalent. For F =
∑n

i=1 fi,
we have that n⟪f, f⟫ = 〈F, F 〉L2(π̄Γ) as well as n〈f, f〉L2(π) = 〈F, F 〉L2(π̄0). Using (182), we hence
conclude that

c1〈f, f〉L2(π) ≤ ⟪f, f⟫ ≤ c2〈f, f〉L2(π), f ∈ L2(π). (183)

By assumption, the marginal process satisfies a Poincaré inequality as well as the equivalent decay
estimate

‖Stf‖2L2(π) ≤ e
−2λt‖f‖2L2(π), f ∈ L2

0(π), (184)

with λ = µ1. By the equivalence (183), we conclude that

‖S̄Γ
t F‖2L2(π̄Γ) ≤ Ce

−2λt‖F‖2L2(π̄Γ), t ≥ 0, F ∈ L̃2
0(π̄Γ), (185)

with C = c2
c1

. Comparing (184) and (185), we see that the coupled process achieves the same
exponential rate of convergence as the one-particles processes, but possibly with a worse constant
C in front of the exponential. The latter can be characterised in terms of the equivalence estimate
(182).

14In one dimension, it can be proved that the first eigenfunction is always odd by appealing to the node theorem for
Schrödinger operators in Sturm-Liouville theory [81, Chapter 9]. We conjecture that this fact might also be true
in higher dimensions, but are not able to give a proof or a reference. Our special thanks go to Sabine Bögli and
Ari Laptev for discussing this question with us.
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Conclusively, the speed of convergence to equilibrium can be both faster (as in Example 70) and
slower (as in Example 71) for coupled processes, in comparison with the underlying one-particle
processes. We leave a more thorough investigation of the Poincaré inequality (170) for future work.

7. Outlook and future work

In this paper we have introduced a general framework for the construction and analysis of coupled
MCMC samplers. Formulating the results in an abstract setting has allowed us to address both
(possibly degenerate) diffusion processes as well as piecewise deterministic Markov processes, em-
phasising common structural properties. The analysis of appropriate central limit theorems has
exposed notable connections to the theory of optimal transportation. We showed that the ensuing
optimisation problem has singularity properties akin to those appearing in the usual Kantorovich
formulation. We then studied a surrogate problem, leading to novel coupling strategies that seem
promising for applications. Finally, we derived a functional inequality of Poincaré type suitable for
the study of the exponential convergence to equilibrium for coupled processes.

Our work can be extended in several directions. On the theoretical side, proving or disproving
the Conjectures 11, 17 and 19 would further illuminate the structural properties of the developed
theory. Moreover, establishing a more rigorous connection between the optimal transport problems
1 and 2 with the usual Kantorovich formulation might lead to further developments bridging the
theories of Markov processes and optimal transportation.

In terms of applications in sampling, a more detailed study of the couplings between many parti-
cles is needed, a starting point being the results in Section 5.2. Furthermore, it would be desirable
to relax our assumption that the laws of the marginal processes remain unchanged, as this would
allow for more pronounced interactions between the particles. In this regard, the inclusion of the
methodology put forward in [52] in our framework would be of particular interest for practitioners.

In the broader context of statistical computation, it seems that coupling approaches along the lines
developed here could be fruitfully applied in the context of the calculation of transport coefficients
and sensitivities [5, 39]. More speculatively, it would be interesting to investigate the use of our
ideas in the context of multilevel Monte Carlo [36] or computational optimal transport [69]. We
leave these directions for future investigations.
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A. Random orthogonal transformations of Brownian motions

The following lemma has been extracted from [29, page 56], see also [66, Theorem 8.4.2]. This
result states that the set of Brownian motions is preserved under possibly time-dependent linear
transformations possessing certain orthogonality properties. Importantly, no regularity constraints
with regard to the time-dependence are required beyond measurability. This fact is crucial in the
proofs of Lemmas 22 and 27.
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Lemma 72 (Random orthogonal transformations). Suppose that the RN -valued stochastic process
(Xt)t≥0 is a solution to the SDE

dXt = OtdWt, X0 = x0, (186)

where (Wt)t≥0 is an M -dimensional standard Brownian motion generating the filtration (Ft)t≥0,
and (Ot)t≥0 is a product-measurable (Ft)t≥0-adapted process taking values in RN×M . Assume fur-
thermore that

OtO
T
t = IN×N (187)

for all t ≥ 0, almost surely. Then (Xt)t≥0 is an N -dimensional standard Brownian motion.

B. The derivative formula for invariant measures

Here, we provide the proof of the derivative formula (120) that allows us to compute the change of
the invariant measure under an infinitesimal change of the coupling.

Proof of Proposition 44. The idea of the proof stems from [51] in the context of invariant measures
for discretised SDEs and was also advertised in [54, Remark 5.5].

For convenience, let us first introduce the notation g = −(L̄∗Γ)−1dΓ∗1. Furthermore, we will make
use of the projection operators

Πφ =

ˆ
Ē
φ dπ̄0

Γ, Π⊥φ = φ−Πφ, (188)

acting on L2(π̄Γ). Using c = (Π + Π⊥)c in (120), we see that (120) is equivalent to

d

dε

∣∣∣∣
ε=0

ˆ
Ē

Π⊥c (dπ̄εΓ) = −
ˆ
Ē

(
Π⊥c

) [
L̄∗Γ
]−1

(dΓ∗1) dπ̄0
Γ. (189)

We may thus without loss of generality assume that Π⊥c = c (i.e. Πc = 0), and will do so in
the following. Furthermore, let us also assume that c ∈ C∞(Ē) such that the calculations in the
sequel are justified. The general case then follows by a standard approximation argument. A short
calculation (using the fact that π̄0

Γ(L̄Γc) = 0) shows that

ˆ
Ē
L̄εΓc · (1 + εg) dπ̄0

Γ = ε2

ˆ
Ē

(dΓc)g dπ̄0
Γ = O(ε2). (190)

Inserting Π + Π⊥ = I, we see that the above is equivalent to

ˆ
Ē

Π⊥L̄εΓΠ⊥c · (1 + εg) dπ̄0
Γ + ε

ˆ
Ē

ΠdΓc · (1 + εg) dπ̄0 = O(ε2). (191)

At the same time, we have that ˆ
Ē
L̄εΓcdπ̄εΓ = 0. (192)

Using again Π + Π⊥ = I and ΠL̄Γ = 0, (192) can be expressed as

ˆ
Ē

Π⊥L̄εΓΠ⊥cdπ̄εΓ = −ε
ˆ
Ē

ΠdΓcdπ̄εΓ. (193)
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We can now combine (191) and (193) to arrive at

ˆ
Ē

Π⊥L̄εΓΠ⊥c · (1 + εg) dπ̄0
Γ −
ˆ
Ē

Π⊥L̄εΓΠ⊥cdπ̄εΓ = O(ε2). (194)

Let us introduce the ‘pseudo-inverse’

Qε = Π⊥L̄−1
Γ Π⊥ − εΠ⊥L̄−1

Γ Π⊥dΓΠ⊥L̄−1
Γ Π⊥, (195)

acting on L2
0(π̄0

Γ). We have that

Π⊥L̄εΓΠ⊥Qε = Π⊥ − ε2Π⊥dΓΠ⊥L̄−1
Γ Π⊥dΓΠ⊥L̄−1

Γ Π⊥, (196)

i.e. in L2
0(π̄0

Γ), Qε inverts L̄εΓ up to an error of order ε2. Upon replacing c by Qεc in (194), it follows
that ˆ

Ē
c(1 + εg) dπ̄0

Γ −
ˆ
Ē
cdπ̄εΓ = O(ε2), (197)

recalling that Π⊥c = c by assumption. In the last step, we have used the fact that there exists a
constant C > 0 such that ∣∣∣∣ˆ

Ē
Π⊥dΓΠ⊥L̄−1

Γ Π⊥dΓΠ⊥L̄−1
Γ Π⊥cdπ̄εΓ

∣∣∣∣ ≤ C, (198)

uniformly in ε. Indeed, the integrand is bounded by the third condition of Definition 40 and the
fact that the coefficients of dΓ have compact support. The bound (198) is required to ensure that
the corresponding integral expression hidden on the right-hand side of (197) is indeed of order ε2.
Finally, deviding by ε in (197) and letting ε→ 0 yields the desired result.

C. Properties of the solutions to one-dimensional Poisson equations

The proofs in this section essentially leverage the fact that the Poisson equations under consideration
can be solved up to quadratures in one dimension.

Proof of Lemma 56. Variation of constants shows that φ′ is given by

φ′(x) =

(
−
ˆ x

−∞
f(s)e−V (s)ds+ C

)
eV (x), (199)

for some constant C ∈ R. The requirement that π(φ) = 0 necessitates C = 0. Indeed, from π(f) = 0
it follows that the integral term in (199) goes to zero as x→ ±∞, and therefore

lim
x→±∞

φ′(x)

eV (x)
= C. (200)

By L’Hôpital’s rule, we have that

lim
x→±∞

φ(x)e−V (x)´ x
0 e

V (s) ds · e−V (x)
= C. (201)

The requirement that φ is integrable with respect to π(dx) ∝ e−V (x) dx implies that

lim
x→±∞

φ(x)e−V (x) = 0.
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Furthermore (again by L’Hôpital’s rule),

lim
x→±∞

ˆ x

0
eV (s) ds · e−V (x) = − lim

x→±∞
V ′(x), (202)

which cannot be zero since
´∞
−∞ e

−V (x) dx <∞. Hence, C = 0.
To prove 1.), notice that from π(f) = 0 and monotonicity, it follows that there exists x∗ ∈ R such

that f(x∗) = 0. Let us assume that f is monotonically increasing (for monotonically decreasing f
the reasoning is analogous). We then have that f ≤ 0 on (−∞, x∗] and f ≥ 0 on [x∗,∞). Consider
now the function

Φ(x) = −
ˆ x

−∞
f(s)e−V (s) ds, x ∈ R. (203)

Clearly Φ is increasing on (−∞, x∗] and decreasing on [x∗,∞). From π(f) = 0 it follows that
limx→±∞Φ(x) = 0 and hence Φ(x) ≥ 0 for all x ∈ R. This proves the claim since φ′(x) = Φ(x)eV (x).

To prove 2.), first observe that π(f) = 0 implies

ˆ 0

−∞
f(s)e−V (s)ds+

ˆ ∞
0

f(s)e−V (s)ds = 0. (204)

Furthermore, the symmetry properties of f and V show that

ˆ 0

−∞
f(s)e−V (s)ds−

ˆ ∞
0

f(s)e−V (s)ds = 0, (205)

using the substitution s 7→ −s. Equations (204) and (205) together imply that Φ(0) = 0, for Φ as
defined in (203). The claim now follows using an analogous argument to the one used in the proof
of 1.).

Proof of Lemma 61. Recall from (135) that

δσ2
F (Γα) =

ˆ
Ē
ξ dπ̄0, (206)

where ξ(x, y) = φ(x)φ(y) and φ : R × {−1,+1} → R is the solution to the (one-particle) Poisson
equation

θ∂xφ(x, θ) + λ(x, θ) (φ(x,−θ)− φ(x, θ)) = f(x), π(φ) = 0. (207)

Note that for convenience, we have assumed without loss of generality that π̃(f) = 0. Let us now
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calculate

ˆ
Ē

Γξ dπ0 =
1

4

∑
θx=±1, θy=±1

ˆ
R2

(
α(x, y, θx, θy) ·

[
φ(x, θx)φ(y, θy)− φ(x, θx)φ(y,−θy)−

− φ(x,−θx)φ(y, θy) + φ(x,−θx)φ(y,−θy)
])

e−(V (x)+V (y)) dxdy

=
1

4

ˆ
R2

([
α++(x, y) + α−−(x, y)− α+−(x, y)− α−+(x, y)

]
·

·
[
φ+(x)φ+(y) + φ−(x)φ−(y)− φ+(x)φ−(y)− φ−(x)φ+(y)

])
e−(V (x)+V (y))dxdy

=
1

4

ˆ
R2

([
α++(x, y) + α−−(x, y)− α+−(x, y)− α−+(x, y)

]
·

·
[
φ+(x)− φ−(x)

]
·
[
φ+(y)− φ−(y)

])
e−(V (x)+V (y)) dxdy, (208)

where again we employed the notation φ±(x) = φ(x,±1). Observe now that equation (207) can be
recast as

∂xφ+(x) + λ+(x) (φ−(x)− φ+(x)) = f(x), (209a)

−∂xφ−(x) + λ−(x) (φ+(x)− φ−(x)) = f(x), (209b)

where both φ+ and φ− have to be integrable with respect to the measure 1
Z e
−V (x)dx and satisfy

ˆ
R

(φ+(x) + φ+(x)) e−V (x)dx = 0. (210)

Adding (209a) and (209b) leads to (
∂x − V ′

)
(φ+ − φ−) = 2f, (211)

using λ+(x) − λ−(x) = V ′(x). Finally setting ∂xφ̃ = 1
2(φ+ − φ−) and comparing with (208) leads

to the desired result. Note that as in the proof of Lemma 56, (211) determines φ+ − φ− uniquely
under the condition that φ+ − φ− is integrable with respect to e−V (x)dx.
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Mathematics. Springer, Cham, 2013. Lévy-type processes: construction, approximation and
sample path properties, With a short biography of Paul Lévy by Jean Jacod, Lévy Matters.
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[48] F. Kühn. Lévy matters. VI, volume 2187 of Lecture Notes in Mathematics. Springer, Cham,
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[61] M. Michel and S. Sénécal. Forward Event-Chain Monte Carlo: a general rejection-free and
irreversible Markov chain simulation method. M2AN, 2017.
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